Fundamentals of Electric Circuits CHAPTER 4 CIRCUIT THEOREMS

1

Dr. Ibrahim Hamdan

Circuit Theorems - Chapter 4

2

- 4.3 Superposition
- 4.4 Source Transformation

Note:- read these parts form Ref (Fundamentals of Electric Circuits 'Charles K. Alexander

& Matthew N. O. Sadiku ')

The superposition principle states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone.

Steps to Apply Superposition Principle:

- Turn off all independent sources except one source. Find the output (voltage or current) due to that active source using any techniques.
- 2. Repeat step 1 for each of the other independent sources.
- 3. Find the total contribution by adding algebraically all the contributions due to the independent sources.

Things to keep in mind:

- 1. When turn off all other independent sources:
 - Independent voltage sources are replaced by 0 V (short circuit) and
 - Independent current sources are replaced by 0 A (open circuit).
- 2. Dependent sources <u>are left</u> intact because they are controlled by circuit variables.

Examples for Superposition Theorem

Example

We consider the effects of 3A and 6V one by one, then add the two effects together for final v_o .

Use the superposition theorem to find v in the circuit of Fig. 4.6.

Solution:

Since there are two sources, let

 $v = v_1 + v_2$

where v_1 and v_2 are the contributions due to the 6-V voltage source and the 3-A current source, respectively. To obtain v_1 , we set the current source to zero, as shown in Fig. 4.7(a). Applying KVL to the loop in Fig. 4.7(a) gives

$$12i_1 - 6 = 0 \quad \Rightarrow \quad i_1 = 0.5 \text{ A}$$

Example 4.3

Thus,

 $v_1=4i_1=2\,\mathrm{V}$

We may also use voltage division to get v_1 by writing

$$v_1 = \frac{4}{4+8}(6) = 2 \text{ V}$$

To get v_2 , we set the voltage source to zero, as in Fig. 4.7(b). Using current division,

$$i_3 = \frac{8}{4+8}(3) = 2$$
 A

Hence,

And we find

 $v_2 = 4i_3 = 8 V$

$$v_2 = 4i_3 = 3$$

Figure 4.7 For Example 4.3: (a) calculating v_1 , (b) calculating v_2 .

 $v = v_1 + v_2 = 2 + 8 = 10$ V

Example 1

Use superposition to find v_o in the circuit.

Solution

Let $v_0 = v_1 + v_2$, where v_1 and v_2 are due to 6-A and 20-V sources respectively. We find v_1 using the circuit below.

$$2/2 = 1 \Omega, \qquad v_1 = \ln \frac{4}{4+2} (6A) = 4 V$$

We find v_2 using the circuit below.

$$v_o = v_1 + v_2 = 4 + 3 = 7 V_1$$

Source Transformation

4.4 Source Transformation

- An equivalent circuit is one whose *v-i* characteristics are identical with the original circuit.
- It is the process of replacing a voltage source v_s in series with a resistor R by a current source i_s in parallel with a resistor R, or vice versa.

4.4 Source Transformation

• The arrow of the current source is directed toward the positive terminal of the voltage source.

$$v_s = i_s R$$
 or $i_s = \frac{v_s}{R}$

15

4.4 Source Transformation

Source transformation also applies to dependent sources, provided we carefully handle the dependent variable. As shown in Fig. dependent voltage source in series with a resistor can be transformed to a dependent current source in parallel with the resistor or vice versa.

16

Examples for source transformation

Use source transformation to find v_o in the circuit of Fig. 4.17.

Solution:

We first transform the current and voltage sources to obtain the circuit in Fig. 4.18(a). Combining the 4- Ω and 2- Ω resistors in series and transforming the 12-V voltage source gives us Fig. 4.18(b). We now combine the 3- Ω and 6- Ω resistors in parallel to get 2- Ω . We also combine the 2-A and 4-A current sources to get a 2-A source. Thus, by repeatedly applying source transformations, we obtain the circuit in Fig. 4.18(c).

Example 4.6

We use current division in Fig. 4.18(c) to get

$$i = \frac{2}{2+8}(2) = 0.4 \text{ A}$$

and

$$v_o = 8i = 8(0.4) = 3.2 \text{ V}$$

Alternatively, since the 8- Ω and 2- Ω resistors in Fig. 4.18(c) are in parallel, they have the same voltage v_o across them. Hence,

$$v_o = (8 \parallel 2)(2 \text{ A}) = \frac{8 \times 2}{10}(2) = 3.2 \text{ V}$$

Example

- Find *i* (with source transformation)

- Transform the circuit form to the equivalent form
- R2 is the same for both .
- •R2 = 330Ω
- The voltage sources is

- Source transformation gave us two resistors in series. The voltage across the series resistors is V1 V2.
- Ohm's Law gives us,
- i=(V1 V2)÷(R1+R2)
- *i*=(3.3 0.66)÷(470+330)
- •<u>i =3.3mA</u>