STAIRS

-هى بلاطات ماطُل للتوصيل من منسوب الى منسوب اخر وتكون مزودة بدرج لامكانية الصعود عليها وعادة تكون بلاطة السلم اما (one way or cantilever solid slab)

No. of steps $=\frac{\text { difference between lev }}{\text { Rise height (0.15) }}$
Length of stair=No. of steps *0.30

Concrete dimensions:

$$
\begin{array}{ll}
t_{s}=\frac{L_{s}}{25,30,36} & \text { (One way slab) } \\
t_{s}=\frac{L_{c}}{10} & \text { (cantilever slab) }
\end{array}
$$

$$
t_{a v}=t_{s}+7 \mathrm{~cm}
$$

$w_{s u}=1.4\left(t_{a v} \gamma_{c}+F . C.\right)+1.6 L . L . \cos \theta \mathrm{kN} / \mathrm{m}^{2}$

$\frac{\frac{1}{2} * 15 * 30}{33.5}=6.7 \simeq 7.0 \mathrm{~cm}$
 -الاحمال فقط

Structural Plan

Systems of Stairs used in ordinary buildings

Type(1)

1-Slabs
Calculate t_{s}
$t_{a v}=t_{s}+7 \mathrm{~cm}$
$w_{s u}=1.4\left[t_{s} \gamma_{c}+F . C.\right]+1.6 L . L$.
$w_{\text {su }}=1.4\left[t_{a v} \gamma_{c}+F \cdot C.\right]+1.6 L \cdot L \cdot \cos \theta$

Strip (1)
$R_{1} \mathrm{kN} / \mathrm{m}$

Strip (2)

B.M.D.

B.M.D.

شريحة افقية فى بلاطة مائلة

$$
\begin{aligned}
& M_{\text {des. }}=M \cos \theta \\
& d=t_{s}-20 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& M_{\text {des. }}=M \\
& d=t_{s}-20 \mathrm{~mm}
\end{aligned}
$$

ملحوظة
نصمد شريحة السلم على انها simple span ودلك لسهولة الحل والتتفيد.

RFT. of the slab.

2-Beams
$\underline{\underline{B_{1}, B_{1}}}$

$w_{1}=$ o.w. $+R_{1}$
$w_{1}=\gamma_{c} b\left(t-t_{s}\right) * 1.40+R_{1}$
$\underline{\underline{B_{\mathcal{Z}}, B_{\mathcal{Z}}}}$
$w_{2}=o . w .+R_{2}$
$w_{2}=\gamma_{c} b\left(t-t_{s}\right) * 1.40+R_{2}$
$\underline{\underline{L-S e c}}$.

$$
\left.\begin{array}{c}
\text { C.L. - C.L. } \\
B=6 t_{S}+b \\
K \frac{L}{10}+b
\end{array}\right] \text { الا }
$$

$$
B_{3}, B_{3}^{\backslash}
$$

$w_{3}=0 . w .+w a l l s$
$w_{3}=o . w_{.}+w a l l s+R_{1}$
$w_{3}{ }^{\prime \prime}=o . w .+w a l l s+S_{3}$

B_{4}

$w_{4}=o . w+w a l l s+R_{2}+S_{4}$
B_{5}
$w_{5}=o . w .+w a l l s+R_{2}$

Continous Beam.

B_{5} Simple Beam.

Type(2)

Type (4)

Type (5)

Example 1:- Show How to solve this stair

Example 2:- Show How to solve this stair

Smell

strip(3)

By Eng. Ezz El-Din Mostafa \& Eng. Yasser M. Samir

Example 3:- Show How to solve this stair

Structural Plan

Another Solution

Example 4:- Show How to solve this stairs

(0.00)

(0.00)

Case 2:-

(0.00)

Alternative solution

strip(2)
By Eng. Ezz El-Din Mostafa \& Eng. Yasser M. Samir

Alternative solution

strip（2）

$w_{s_{h z}}$
口ー口境
strip（3）

$\left.\right|_{1} L_{1} / 2 L_{1} L_{1} / 2_{\mid} L_{2} L_{1} / L_{1} L_{1} / 2$

Example 5:- Show How to solve this stair

Arc. Plan

Structural Plan

Example 6:- Show How to solve this stair

Structural Plan

Structural Plan

Example 7:- Show How to solve this stair

Example 8:- Show How to solve this stair

Structural Plan

By Eng. Ezz El-Din Mostafa \& Eng. Yasser M. Samir

Another solution

Example 9:-

The following figure show the general layout of stair cases (each step 300x150), proceed with the following :
1- Complete design including all slabs and their supporting beams
2- Draw to a convenient scale the details of reinforcement of the stair and the supporting beams in plan \& sections.
$F . C .=1.50 \mathrm{kN} / \mathrm{m}^{2}$
L.L. $=3.00 \mathrm{kN} / \mathrm{m}^{2}$
$f_{c u}=25 \mathrm{~N} / \mathrm{mm}^{2}$
Steel used 360/520

$0 . w$ of beam =4.0kN/m

$\tan \theta=\frac{1.20}{2.10}=0.571$
$\theta=29.75$

1-slab thickness
for Cantilever slab S1

$$
t_{s}=\frac{L_{c}}{15}+20=\frac{2000}{15}+20=153.33 \mathrm{~mm}
$$

for Cantilever slab S2
$t_{s}=\frac{L_{c}}{15}+20=\frac{2000}{15}+20=153.33 \mathrm{~mm}$
\Longrightarrow Take $t_{s}=16 \mathrm{~cm}$ (check deflection)

$$
t_{a v}=t_{s}+7=23 \mathrm{~cm}
$$

2-Calculation of load

For Landing :-

$$
\begin{aligned}
& w_{s h z}=1.4\left[t_{s} \gamma_{c}+F . c .\right]+1.6 L . L . \quad \mathrm{kN} / \mathrm{m}^{2} \\
& w_{s h z}=1.4[0.16 * 25+1.50]+1.6 * 3.00 \\
& w_{\text {shz }}=12.50 \quad \mathrm{kN} \backslash \mathrm{~m}^{2} \\
& \text { For Flight }:- \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& w_{\sin }=1.4\left[t_{s a v} \gamma_{c}+F . c .\right]+1.6 L . L \cos \theta \quad \mathrm{kN} / \mathrm{m}^{2} \\
& w_{\sin }=1.4[0.23 * 25+1.50]+1.6 * 3.00 * \cos (29.75) \\
& w_{\sin }=14.32 \quad k N \backslash m^{2}
\end{aligned}
$$

-Design of sections
Strip (1) :-

$\operatorname{Sec}(1-1)$
$M_{u . l .}=25.00 \mathrm{kN.m} \quad \& \quad B=1000 \mathrm{~mm} \quad \& \quad d=160-20=140 \mathrm{~mm}$
$140=C_{1} \sqrt{\frac{25.00 * 10^{6}}{1000 * 25}} \quad C_{1}=4.43 \quad \& \quad J=0.813$
$A_{s}=\frac{25.00 * 10^{6}}{0.813 * 140 * 360}=610.13 \mathrm{~mm}^{2} / \mathrm{m}^{\text {. }}$
$A_{s}=5 \$ 13 / m^{\prime}$

Strip (2) :-
28.64 kN. m

ـ ملحوظة
لاحظ أننا لا نعتبر هذة الشريحـ شريحـة أفقيـة فى بلاطـة ماطلـ لآن العزم سالب $\operatorname{Sec}(1-1)$
$M_{u . l .}=28.64 \mathrm{kN} . \mathrm{m} \quad \& \quad B=1000 \mathrm{~mm} \quad \& \quad d=230 \mathrm{~mm}$
$230=C_{1} \sqrt{\frac{28.64 * 10^{6}}{1000 * 25}} \quad C_{1}=6.8 \quad \& \quad J=0.826$
$A_{s}=\frac{28.64 * 10^{6}}{0.826 * 230 * 360}=418.76 \mathrm{~mm}^{2} / \mathrm{m}^{\text {. }}$
$A_{s} /$ step $=418.76 * 0.3=125.63 \mathrm{~mm}^{2} /$ step.
$A_{s}=2 \phi 10 /$ step
-Design of Beam

$W 1=4 * 1.4+25=30.60 \mathrm{kN} / \mathrm{m}^{\prime}$
$W 2=4 * 1.4+28.64=34.24 \mathrm{kN} / \mathrm{m}^{\prime}$

Design for shear+Torsion:

$$
\begin{aligned}
& q_{s u}=\frac{Q u}{b d}=\frac{102.61 * 10^{3}}{400 * 750} \\
& q_{s u}=0.342 \mathrm{~N} / \mathrm{mm}^{2} \\
& q_{t u}=\frac{M_{t u}}{1.7 A_{o h} t_{e}} \\
& A_{o h}=(400-50)(800-50) \\
& A_{o h}=262500 \mathrm{~mm}^{2} \\
& P_{h}=2[350+750]=2200 \mathrm{~mm} \\
& t_{e}=\frac{A_{o h}}{P_{h}}=119.32 \mathrm{~mm} \\
& q_{t u}=\frac{84.64 * 10^{6}}{1.7 * 262500 * 119.32} \\
& q_{t u}=1.59 \mathrm{~N} / \mathrm{mm}^{2} \\
& q_{c u}=0.24 \sqrt{25 / 1.5}=0.98 \mathrm{~N} / \mathrm{mm}^{2} \|_{t u_{\min }}=0.06 \sqrt{25 / 1.5}=0.24 \mathrm{~N} / \mathrm{mm}^{2} \\
& q_{u_{\max }}=0.70 \sqrt{25 / 1.5}=2.86 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sqrt{q_{s u}^{2}+q_{t u}^{2}}=\sqrt{(0.34)^{2}+(1.59)^{2}}=1.63 \mathrm{~N} / \mathrm{mm}^{2}<q_{u_{\max }} \text { (ok) } \\
& \text { (Design for Torsion) }
\end{aligned}
$$

$$
\begin{aligned}
& A_{s t r}=\frac{M_{t u} \cdot S}{1.7 A_{\text {oh }}\left(\frac{f_{y_{s t}}}{\gamma_{s}}\right)} \\
& \Longrightarrow \frac{A_{s t r}}{S}=\frac{84.64 * 10^{6}}{1.7 * 262500 * 360 / 1.15} \\
& \frac{A_{s t r}}{S}=0.606
\end{aligned}
$$

assume $A_{\text {str }}=\phi 10=78.5 \mathrm{~mm}^{2}$

$$
\frac{78.5}{S}=0.606 \Longrightarrow S=129.54 \mathrm{~mm}>100 \mathrm{~mm}
$$

$$
\text { No. of stirrups } / m^{\prime}=\frac{1000}{S}=7.72
$$

Take stirrups $8 \$ 10 / m^{\prime}$ (2 branches)

$$
A_{s L}=\left(\frac{A_{s t r}}{S}\right) *\left(P_{h}\right) *\left(\frac{f_{y_{s t}}}{f_{y_{l . b .}}}\right)
$$

$$
A_{s L}=0.606 * 2200 * \frac{360}{360}=1333.2 \mathrm{~mm}^{2}
$$

$$
\frac{A_{s L}}{4}=\frac{1333.2}{4}=333.3 \mathrm{~mm}^{2}
$$

Design for B.M.

$\operatorname{Sec}(1-1)(L-\sec)$

$B=\left[\begin{array}{l}6 * 0.16+0.4=1.36 \mathrm{~m} \\ C . L . \rightarrow C . L .=2.0+0.2=2.20 \mathrm{~m} \\ \frac{1 * 6.42}{10}+0.40=1.04 \mathrm{~m}\end{array}\right.$
$B=1040 \mathrm{~mm} \& d=800-50 \mathrm{~mm}=750 \mathrm{~mm} \& M_{u}=165.75 \mathrm{kN} . \mathrm{m}$

$$
\begin{aligned}
& 750=C_{1} \sqrt{\frac{165.75 * 10^{6}}{1040 * 25}} \quad C_{1}=9.4 \quad \& \quad J=0.826 \\
& A_{s}=\frac{165.75 * 10^{6}}{0.826 * 750 * 360}=743.21 \mathrm{~mm}^{2} \\
& A_{s_{\min }}=\frac{1.1}{f_{y}} b d=\frac{1.1}{360} 400 * 750=916.67 \mathrm{~mm}^{2}>A_{s}
\end{aligned}
$$

$$
A_{s_{\min }}=\left[\begin{array}{l}
\frac{1.1}{f_{y}} b d=\frac{1.1}{360} 400 * 750=916.67 \mathrm{~mm}^{2} \\
1.3 A_{s_{r e q}}=1.3 * 743.21=966.173 \mathrm{~mm}^{2} \\
\frac{0.15}{100} b d=\frac{0.15}{100} 400 * 750=450.00 \mathrm{~mm}^{2}
\end{array}\right.
$$

$$
A_{s_{\min }}=916.67 \mathrm{~mm}^{2}
$$

$$
\begin{aligned}
A_{s_{\text {total }}} & =A_{s_{(B . M .)}}+\frac{A_{s L}}{4} \\
& =916.67+333.3=1250.0 \quad \mathrm{~mm}^{2} \\
A_{s_{\text {total }}} & =5 \ngtr 18
\end{aligned}
$$

$b=400 \mathrm{~mm} \& d=800-50 \mathrm{~mm}=750 \mathrm{~mm} \& M_{u}=54.93 \mathrm{kN} . \mathrm{m}$

$$
750=C_{1} \sqrt{\frac{54.93 * 10^{6}}{400 * 25}} \quad C_{1}=10.12 \quad \& \quad J=0.826
$$

$$
A_{s}=\frac{54.93 * 10^{6}}{0.826 * 750 * 360}=246.30 \mathrm{~mm}^{2}
$$

$$
A_{s_{\min }}=\frac{1.1}{f_{y}} b d=\frac{1.1}{360} 400 * 750=916.67 \mathrm{~mm}^{2}>A_{\mathrm{s}}
$$

$$
A_{s_{\min }}=\left[\begin{array}{l}
\frac{1.1}{f_{y}} b d=\frac{1.1}{360} 400 * 750=916.67 \mathrm{~mm}^{2} \\
1.3 A_{s_{r e q}}=1.3 * 246.30=320.20 \mathrm{~mm}^{2} \\
\frac{0.15}{100} b d=\frac{0.15}{100} 400 * 750=450.00 \mathrm{~mm}^{2}
\end{array}\right.
$$

$A_{s_{\text {min }}}=450.00 \mathrm{~mm}^{2}$

$$
\begin{aligned}
A_{s_{\text {total }}} & =A_{s_{(B . M .)}}+\frac{A_{s L}}{4} \\
& =450.00+333.3=783.30 \mathrm{~mm}^{2} \\
A_{s_{\text {total }}} & =4 \ngtr 16
\end{aligned}
$$

Example 10:-

The following figure show the general layout of stair cases (each step 300x150), proceed with the following :
1- Complete design including all slabs and their supporting beams
2- Draw to a convenient scale the details of reinforcement of the stair and the supporting beams in plan \& sections.
$F . C .=1.50 \mathrm{kN} / \mathrm{m}^{2}$
$L . L .=3.00 \mathrm{kN} / \mathrm{m}^{2}$ $f_{c u}=25 \mathrm{~N} / \mathrm{mm}^{2}$
Steel used 360/520
$0 . w$ of beam =4.0kN/m

$$
\begin{gathered}
\tan \theta=\frac{1.20}{2.10}=0.571 \\
\theta=29.75
\end{gathered}
$$

1-slab thickness
for one way slab S1

$$
t_{s}=\frac{L}{25}=\frac{400}{25}=16 \mathrm{~cm}
$$

for one way slab S2

$$
t_{s}=\frac{L}{25}=\frac{400}{25}=16 \mathrm{~cm}
$$

$$
\begin{aligned}
& \Longrightarrow \text { Take } t_{s}=16 \mathrm{~cm} \\
& t_{a v}=t_{s}+7=23 \mathrm{~cm}
\end{aligned}
$$

2-Calculation of load

For Landing :-

$$
\begin{aligned}
& w_{s h z}=1.4\left[t_{s} \gamma_{c}+F . c .\right]+1.6 L . L . \quad \mathrm{kN} / \mathrm{m}^{2} \\
& w_{s h z}=1.4[0.16 * 25+1.50]+1.6 * 3.00 \\
& w_{\text {shz }}=12.50 \quad \mathrm{kN} \backslash \mathrm{~m}^{2} \\
& \text { For Flight }:- \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& w_{\sin }=1.4\left[t_{\operatorname{sav}} \gamma_{c}+F . c .\right]+1.6 L . L \cos \theta \quad \mathrm{kN} / \mathrm{m}^{2} \\
& w_{\sin }=1.4[0.23 * 25+1.50]+1.6 * 3.00 * \cos (29.75) \\
& w_{\sin }=14.32 \quad k N \backslash m^{2}
\end{aligned}
$$

-Design of sections
Strip (1) :-

$\operatorname{Sec}(1-1)$
$M_{u . l .}=25.00 \mathrm{kN.m} \quad \& \quad B=1000 \mathrm{~mm} \quad \& \quad d=160-20=140 \mathrm{~mm}$
$140=C_{1} \sqrt{\frac{25.00 * 10^{6}}{1000 * 25}} \quad C_{1}=4.43 \quad \& \quad J=0.82$
$A_{s}=\frac{25.00 * 10^{6}}{0.82 * 140 * 360}=607.58 \mathrm{~mm}^{2} / \mathrm{m}^{\prime}$
$A_{s}=6 \nrightarrow 12 / m^{\prime}$

Strip (2) :-

-
لاحظ أننا هنا نعتبر مذة الشريحة شريحـ أفقية فى بلاطة ماطلة لآن العزم موجب وماثل على أتجاة الحديد لذلك فمو يحتاج الى تحليل

$\operatorname{Sec}(1-1)$
$M_{\text {u.l. }}=28.64 \mathrm{kN} . \mathrm{m} \quad \& \quad B=1000 \mathrm{~mm} \quad \& \quad d=160-20=140 \mathrm{~mm}$
Mdes $=28.64 \cos \theta=24.87 \mathrm{kN} . \mathrm{m}$
$140=C_{1} \sqrt{\frac{24.87 * 10^{6}}{1000 * 25}} \quad C_{1}=4.44 \quad \& \quad J=0.82$
$A_{s}=\frac{24.87 * 10^{6}}{0.82 * 140 * 360}=604.20 \mathrm{~mm}^{2} / \mathrm{m}^{\text {. }}$
$A_{s}=6 \nrightarrow 12 / m^{\prime}$

l?27S lof $L^{\prime} \boldsymbol{H}^{\prime} \mathcal{C}$ fo sl?p7ad

