Lecture 5

Communication Theory

Fundamentals of Signals and Systems

Introduction

Example 1.7 Discrete-Time Sinusoidal Signal

A pair of sinusoidal signals with a common angular frequency is defined by

$$
x_{1}[n]=\sin [5 \pi n] \quad \text { and } \quad x_{2}[n]=\sqrt{3} \cos [5 \pi n]
$$

(a) Both $x_{1}[n]$ and $x_{2}[n]$ are periodic. Find their common fundamental period.
(b) Express the composite sinusoidal signal

$$
y[n]=x_{1}[n]+x_{2}[n]
$$

In the form $y[n]=A \cos (\Omega n+\phi)$, and evaluate the amplitude A and phase ϕ.
<Sol.>
(a) Angular frequency of both $x_{1}[n]$ and $x_{2}[n]$:

$$
\Omega=5 \pi \text { radians/cycle } \longleftrightarrow N=\frac{2 \pi m}{\Omega}=\frac{2 \pi m}{5 \pi}=\frac{2 m}{5}
$$

frequency o $x[n]$:

$$
\Omega=\frac{2 \pi}{N}
$$

\leadsto This can be only for $m=5,10,15, \ldots$, which results in $N=2,4,6, \ldots$
(b) Trigonometric identity:
$A \cos (\Omega n+\phi)=A \cos (\Omega n) \cos (\phi)-A \sin (\Omega n) \sin (\phi)$
Let $\Omega=5 \pi$, then compare $x_{1}[n]+x_{2}[n]$ with the above equation to obtain that

Introduction

$$
\begin{aligned}
& A \sin (\phi)=-1 \text { and } A \cos (\phi)=\sqrt{3} \\
& \tan (\phi)=\frac{\sin (\phi)}{\cos (\phi)}=\frac{\text { amplitude of } x_{1}[n]}{\text { amplitude of } x_{2}[n]}=\frac{-1}{\sqrt{3}} \longrightarrow \phi=-\pi / 6 \\
& A \sin (\phi)=-1 \\
\longmapsto & A=\frac{-1}{\sin (-\pi / 6)}=2 \quad \text { Accordingly, we may express } y[n] \text { as } \\
& y[n]=2 \cos \left(5 \pi n-\frac{\pi}{6}\right)
\end{aligned}
$$

\star 1.6.3 Relation Between Sinusoidal and Complex Exponential Signals

1. Euler's identity: $e^{j \theta}=\cos \theta+j \sin \theta \quad$ (1.41) $\quad B e^{j \omega t}$

Complex exponential signal: $B=A e^{j \phi}$
(1.42) $=A e^{j \phi} e^{j \omega t}$

$$
\begin{align*}
& x(t)=A \cos (\omega t+\phi) \quad \text { (1.35) } \tag{1.35}\\
& \longrightarrow A \cos (\omega t+\phi)=\operatorname{Re}\left\{B e^{j \omega t}\right\} \tag{1.42}
\end{align*}
$$

$$
\begin{aligned}
& =A e^{j(\phi+\omega t)} \\
& =A \cos (\omega t+\phi)+j A \sin (\omega t+\phi)
\end{aligned}
$$

Dr. Hany Ahmed Date: 9/2017

Introduction

\diamond Continuous-time signal in terms of sine function:

$x(t)=A \sin (\omega t+\phi)$

$$
\begin{equation*}
A \sin (\omega t+\phi)=\operatorname{Im}\left\{B e^{j \omega t}\right\} \tag{1.44}
\end{equation*}
$$

2. Discrete-time case:

$$
\begin{equation*}
A \cos (\Omega n+\phi)=\operatorname{Re}\left\{B e^{j \Omega n}\right\} \quad \text { (1.46) } \quad \text { and } \quad A \sin (\Omega n+\phi)=\operatorname{Im}\left\{B e^{j \Omega n}\right\} \tag{1.47}
\end{equation*}
$$

3. Two-dimensional representation of the complex exponential $e^{j \Omega n}$ for $\Omega=\pi / 4$ and $n=0,1,2, \ldots, 7$. : Fig. 1.34.
Projection on real axis: $\cos (\Omega n)$; Projection on imaginary axis: $\sin (\Omega n)$

Figure 1.34 (p. 41)
Complex plane, showing eight points uniformly distributed on the unit circle.

Dr. Hany Ahmed Date: 9/2017

Introduction

* 1.6.4 Exponential Damped Sinusoidal Signals

$$
\begin{equation*}
x(t)=A e^{-\alpha t} \sin (\omega t+\phi), \quad \alpha>0 \tag{1.48}
\end{equation*}
$$

Example for $A=60$, $\alpha=6$, and $\phi=0$: Fig.1.35.

Figure 1.35 (p.41)
Exponentially damped sinusoidal signal $A e^{-a t}$ $\sin (\omega t)$, with $A=60$ and α $=6$.

Signals_and_12 2 stems_Simon

Introduction

Ex. Generation of an exponential damped sinusoidal signal $\frac{1}{L} \int_{-\infty}^{t} v(\tau) d \tau$
$\quad \Rightarrow$ Fig. 1-36.
Circuit Eq.: $\quad C \frac{d}{d t} v(t)+\frac{1}{R} v(t)+\frac{1}{L} \int_{-\infty}^{t} v(\tau) d \tau=0$
$\longrightarrow v(t)=V_{0} e^{-t /(2 C R)} \cos \left(\omega_{0} t\right) \quad t \geq 0$
where $\quad \omega_{0}=\sqrt{\frac{1}{L C}-\frac{1}{4 C^{2} R^{2}}}$
(1.51)
$R>\sqrt{L /(4 C)}$

Comparing Eq. (1.50) and (1.48), we have

$$
A=V_{0}, \quad \alpha=1 /(2 C R), \quad \omega=\omega_{0}, \quad \text { and } \quad \phi=\pi / 2
$$

- Discrete-time case:

$$
\begin{equation*}
x[n]=B r^{n} \sin [\Omega n+\phi] \tag{1.52}
\end{equation*}
$$

\star 1.6.5 Step Function
\checkmark Discrete-time case:

$$
u[n]= \begin{cases}1, & n \geq 0 \tag{1.53}\\ 0, & n<0\end{cases}
$$

Fig. 1-37.

Figure 1.37 (p. 43)
Discrete-time version
of step function of unit amplitude.

Figure 1.36 (p. 42)
Parallel $L R C$, circuit, with inductor L, capacitor C, and resistor R all assumed to be ideal.

Dr. Hany Ahmed Date: 9/2017

Introduction

- Continuous-time case:

$$
u(t)= \begin{cases}1, & t>0 \tag{1.54}\\ 0, & t<0\end{cases}
$$

Figure 1.38 (p.44)
Continuous-time version of the unit-step function of unit amplitude.

Example 1.8 Rectangular Pulse
Consider the rectangular pulse $\boldsymbol{x}(\boldsymbol{t})$ shown in Fig. 1.39 (a). This pulse has an amplitude A and duration of 1 second. Express $x(t)$ as a weighted sum of two step functions.
<Sol.>

1. Rectangular pulse $x(t): \quad x(t)= \begin{cases}A, & 0 \leq|t|<0.5 \\ 0, & |t|>0.5\end{cases}$

$$
\longleftrightarrow x(t)=A u\left(t+\frac{1}{2}\right)-A u\left(t-\frac{1}{2}\right)
$$

Example 1.9 RC Circuit
Find the response $\boldsymbol{v}(\boldsymbol{t})$ of $\boldsymbol{R C}$ circuit shown in Fig. 1.40 (a).
<Sol.>

Introduction

Figure 1.39 (p. 44)
(a) Rectangular pulse $x(t)$ of amplitude A and duration of 1 s , symmetric about the origin. (b) Representation of $x(t)$ as the difference of two step functions of amplitude A, with one step function shifted to the left by $1 / 2$ and the other shifted to the right by $1 / 2$; the two shifted signals are denoted by $x_{1}(t)$ and $x_{2}(t)$, respectively. Note that $x(t)$ $=x_{1}(t)-x_{2}(t)$.

Introduction

* 1.6.6 Impulse Function

- Discrete-time case:

$$
\delta[n]= \begin{cases}1, & n=0 \\ 0, & n \neq 0\end{cases}
$$

Fin 1.41

(b)

Figure 1.41 (p. 46)
Discrete-time form of impulse.

(a)

(c)

Figure 1.42 (p. 46)
(a) Evolution of a rectangular pulse of unit area into an impulse of unit strength (i.e., unit impulse). (b) Graphical symbol for unit impulse.
(c) Representation of an impulse of strength a that results from allowing the duration Δ of a rectangular pulse of area a to approach zero.

Introduction

- Continuous-time case:

Dirac delta function

$$
\begin{equation*}
\delta(t)=0 \quad \text { for } \quad t \neq 0 \tag{1.59}
\end{equation*}
$$

$\int_{-\infty}^{\infty} \delta(t) d t=1$

1. As the duration decreases, the rectangular pulse approximates the impulse more closely.
\leadsto Fig. 1.42.
2. Mathematical relation between impulse and rectangular pulse function:

$$
\begin{equation*}
\delta(t)=\lim _{\Delta \rightarrow 0} x_{\Delta}(t) \tag{1.61}
\end{equation*}
$$

Fig. 1.42 (a).

1. $x_{\Delta}(t)$: even function of $t, \Delta=$ duration.
2. $x_{\Delta}(t)$: Unit area.
3. $\delta(t)$ is the derivative of $u(t)$:
4. $u(t)$ is the integral of $\delta(t)$:

$$
\begin{equation*}
u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau \tag{1.62}
\end{equation*}
$$

Example 1.10 RC Circuit (Continued)
For the RC circuit shown in Fig. 1.43 (a), determine the current $\boldsymbol{i}(\boldsymbol{t})$ that flows through the capacitor for $t \geq 0$.

Introduction

- Properties of impulse function:

1. Even function: $\quad \delta(-t)=\delta(t)$
2. Sifting property:

$$
\begin{equation*}
\int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) d t=x\left(t_{0}\right) \tag{1.65}
\end{equation*}
$$

3. Time-scaling property:

$$
\begin{equation*}
\delta(a t)=\frac{1}{a} \delta(t), \quad a>0 \tag{1.66}
\end{equation*}
$$

<p.f.> Fig. 1.44

1. Rectangular pulse approximation:

$$
\begin{equation*}
\delta(a t)=\lim _{\Delta \rightarrow 0} x_{\Delta}(a t) \tag{1.67}
\end{equation*}
$$

2. Unit area pulse: Fig. 1.44(a).

Time scaling: Fig. 1.44(b).
Area $=1 / a$
Restoring unit area $\longmapsto a x_{\Delta}(a t)$

$$
\begin{equation*}
\longrightarrow \lim _{\Delta \rightarrow 0} x_{\Delta}(a t)=\frac{1}{a} \delta(t) \tag{1.68}
\end{equation*}
$$

Ex. RLC circuit driven by impulsive source: Fig. 1.45.

For Fig. 1.45 (a), the voltage across the capacitor at time $\boldsymbol{t}=\mathbf{0}^{+}$is

$$
\begin{equation*}
V_{0}=\frac{1}{C} \int_{0^{-}}^{0^{+}} I_{0} \delta(t) d t=\frac{I_{0}}{C} \tag{1.69}
\end{equation*}
$$

Introduction

(a)

(b)

(c)

Figure 1.44 (p. 48)
Steps involved in proving the time-scaling property of the unit impulse. (a) Rectangular pulse $x \Delta(t)$ of amplitude $1 / \Delta$ and duration Δ, symmetric about the origin. (b) Pulse $x \Delta(t)$ compressed by factor a. (c) Amplitude scaling of the compressed pulse, restoring it to unit area.

Figure 1.45 (p. 49) (a) Parallel $L R C$ circuit driven by an impulsive current signal. (b) Series $I_{0} \mathrm{~d}(t)$ LRC circuit driven by an impulsive voltage signal.

Introduction

* 1.6.7 Derivatives of The Impulse

Problem 1.24

1. Doublet:

$$
\begin{equation*}
\delta^{(1)}(t)=\lim _{\Delta \rightarrow 0} \frac{1}{\Delta}(\delta(t+\Delta / 2)-\delta(t-\Delta / 2)) \tag{1.70}
\end{equation*}
$$

2. Fundamental property of the doublet:

$$
\begin{align*}
& \int_{-\infty}^{\infty} \delta^{(1)}(t) d t=0 \tag{1.71}\\
& \int_{-\infty}^{\infty} f(t) \delta^{(1)}\left(t-t_{0}\right) d t=\left.\frac{d}{d t} f(t)\right|_{t=t_{0}} \tag{1.72}
\end{align*}
$$

3. Second derivative of impulse:

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} \delta(t)=\frac{d}{d t} \delta^{(1)}(t)=\lim _{\Delta \rightarrow 0} \frac{\delta^{(1)}(t+\Delta / 2)-\delta^{(1)}(t-\Delta / 2)}{\Delta} \tag{1.73}
\end{equation*}
$$

* 1.6.8 Ramp Function

1. Continuous-time case:

$$
r(t)=\left\{\begin{array}{ll}
t, & t \geq 0 \tag{1.75}\\
0, & t<0
\end{array} \quad \mathbf{(1 . 7 4)} \quad \text { or } \quad r(t)=t u(t) \quad \text { (1.75) } \quad 山 \quad \text { Fig. } 1.46\right.
$$

Introduction

2. Discrete-time case:

$$
r[n]= \begin{cases}n, & n \geq 0 \tag{1.76}\\ 0, & n<0\end{cases}
$$

or

$$
\begin{equation*}
r[n]=n u[n] \tag{1.77}
\end{equation*}
$$

Example 1.11 Parallel Circuit Consider the parallel circuit of Fig. 1-48 (a) involving a dc current source I_{0} and an initially uncharged capacitor C. The switch across the capacitor is suddenly

Figure 1.47 (p. 52) Discrete-time version of the ramp function.

Figure 1.46 (p. 51) Ramp function of unit slope.

Time t
0
 opened at time $t=0$. Determine the current $i(t)$ flowing through the capacitor and the voltage $\boldsymbol{v}(\boldsymbol{t})$ across it for $\boldsymbol{t} \geq 0$.
<Sol.>

1. Capacitor current: $\quad i(t)=I_{0} u(t)$

Introduction

2. Capacitor voltage:

$$
v(t)=\frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau
$$

$$
v(t)=\frac{1}{C} \int_{-\infty}^{t} I_{0} u(\tau) d \tau
$$

$$
= \begin{cases}0 & \text { for } t<0 \\ \frac{I_{0}}{C} t & \text { for } t>1\end{cases}
$$

$$
=\frac{I_{0}}{C} t u(t)
$$

$$
=\frac{I_{0}}{C} r(t)
$$

(a) assumed to be

(b)
uncharged, and the

+ Figure 1.48 (p. 52) (a) Parallel circuit consisting of a
_ current source, switch, and capacitor, the capacitor is initially switch is opened at
+ time $t=0$. (b) Equivalent circuit replacing the
- action of opening the switch with the step function $u(t)$.

Introduction

1.7 Systems Viewed as Interconnections of Operations

A system may be viewed as an interconnection of operations that transforms an input signal into an output signal with properties different from those of the input signal.

1. Continuous-time case:
$y(t)=H\{x(t)\}$
2. Discrete-time case:

$$
\begin{equation*}
y[n]=H\{x[n]\} \tag{1.79}
\end{equation*}
$$

Fig. 1-49 (a) and (b).

(a)

(b)

Figure 1.49 (p. 53)
Block diagram representation of operator H for (a) continuous time and (b) discrete time.

What are Systems?

- Systems are used to process signals to modify or extract information
- Physical system - characterized by their input-output relationships
- E.g. electrical systems are characterized by voltage-current relationships for components and the laws of interconnections (i.e. Kirchhoff's laws)
- From this, we derive a mathematical model of the system
- "Black box" model of a svstem:

Linear Systems (1)

- A linear system exhibits the additivity property:

$$
x_{1} \longrightarrow y_{1} \quad x_{2} \longrightarrow y_{2} \quad x_{1}+x_{2} \longrightarrow y_{1}+y_{2}
$$

- It also must satisfy the homogeneity or scaling property:

$$
x \longrightarrow y
$$

$$
k x \longrightarrow k y
$$

- These can be combined into the property of superposition:

$$
x_{1} \longrightarrow y_{1} x_{2} \longrightarrow y_{2} \quad k_{1} x_{1}+k_{2} x_{2} \longrightarrow k_{1} y_{1}+k_{2} y_{2}
$$

- A non-linear system is one that is NOT linear (i.e. does not obey the principle of superposition)

Introduction

1.10 Theme Example

* 1.10.1 Differentiation and Integration: RC Circuits

1. Differentiator \Rightarrow Sharpening of a pulse

$$
y(t)=\frac{d}{d t} x(t)
$$

1) Simple RC circuit: Fig. 1.62.
2) Input-output relation:

$$
\longrightarrow \frac{d}{d t} v_{2}(t)+\frac{1}{R C} v_{2}(t)=\frac{d}{d t} v_{1}(t)
$$

If $R C$ (time constant) is small enough such that (1.100) is dominated by the second term $v_{2}(t) / R C$, then

$$
\begin{equation*}
\frac{1}{R C} v_{2}(t) \approx \frac{d}{d t} v_{1}(t) \quad \longleftrightarrow \quad v_{2}(t) \approx R C \frac{d}{d t} v_{1}(t) \text { for } R C \text { small } \tag{1.101}
\end{equation*}
$$

Introduction

$山$ Input: $x(t)=R C v_{1}(t)$; output: $y(t)=v_{2}(t)$
2. Integrator \Rightarrow smoothing of an input signal

$$
\begin{equation*}
y(t)=\int_{-\infty}^{t} x(\tau) d \tau \tag{1.102}
\end{equation*}
$$

1) Simple RC circuit: Fig. 1.63.
2) Input-output relation:

$$
\begin{equation*}
R C \frac{d}{d t} v_{2}(t)+v_{2}(t)=v_{1}(t) \tag{1.103}
\end{equation*}
$$

$\longmapsto R C v_{2}(t)+\int_{-\infty}^{t} v_{2}(\tau) d \tau=\int_{-\infty}^{t} v_{1}(\tau) d \tau$
If $R C$ (time constant) is large enough such that (1.103) is dominated by the first term $R C_{2}(t)$, then
$R C v_{2}(t) \approx \int_{-\infty}^{t} \nu_{1}(\tau) d \tau$

Figure 1.63 (p. 72)
Simple RC circuit with large time constant used as an approximator to an integrator.
$\Perp v_{2}(t) \approx \frac{1}{R C} \int_{-\infty}^{t} v_{1}(\tau) d \tau$ for large $R C$

Input: $x(t)=\left[1 /(R C) v_{1}(t)\right]$;
output: $y(t)=v_{2}(t)$

Introduction

1.9 Noise

Noise \Rightarrow Unwanted signals

1. External sources of noise: atmospheric noise, galactic noise, and humanmade noise.
2. Internal sources of noise: spontaneous fluctuations of the current or voltage signal in electrical circuit. (electrical noise)

$\mathrm{m} \longrightarrow$ Fig. 1.60.

* 1.9.1 Thermal Noise

Thermal noise arises from the random motion of electrons in a conductor.
Two characteristics of thermal noise:

1. Time-averaged value:

$$
\bar{v}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} v(t) d t
$$

$2 T=$ total observation interval of noise
As $T \rightarrow \infty, \bar{v} \rightarrow 0 \quad$ Refer to Fig. 1.60.
2. Time-average-squared value:

$$
\begin{equation*}
\overline{v^{2}}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} v^{2}(t) d t \tag{1.95}
\end{equation*}
$$

As $\boldsymbol{T} \rightarrow \infty, \quad \| \square \overline{v^{2}}=4 k T_{a b s} R \Delta f \quad$ volts 2

Introduction

Figure 1.60
(p. 68)

Sample waveform of electrical noise generated by a thermionic diode with a heated cathode. Note that the timeaveraged value of the noise voltage displayed is approximately zero.
\& Two operating factor that affect available noise power:

1. The temperature at which the resistor is maintained.
2. The width of the frequency band over which the noise voltage across the resistor is measured.

* 1.9.2 Other Sources of Electrical Noise

1. Shot noise: the discrete nature of current flow electronic devices
2. Ex. Photodetector:
