Fundamentals of Electric Circuits CHAPTER 4 CIRCUIT THEOREMS

Dr. Ibrahim Hamdan

Circuit Theorems - Chapter 4

2

4.4 Source Transformation

Note:- read these parts form Ref (Fundamentals of Electric Circuits 'Charles K. Alexander

& Matthew N. O. Sadiku ')

Source Transformation

4.4 Source Transformation

- An equivalent circuit is one whose *v-i* characteristics are identical with the original circuit.
- It is the process of replacing a voltage source v_s in series with a resistor R by a current source i_s in parallel with a resistor R, or vice versa.

4.4 Source Transformation

• The arrow of the current source is directed toward the positive terminal of the voltage source.

Independent source transform

$$v_s = i_s R$$
 or $i_s = \frac{v_s}{R}$

5

4.4 Source Transformation

Source transformation also applies to dependent sources, provided we carefully handle the dependent variable. As shown in Fig. dependent voltage source in series with a resistor can be transformed to a dependent current source in parallel with the resistor or vice versa.

6

Examples for Source transformation

Use source transformation to find v_o in the circuit of Fig. 4.17.

Solution:

We first transform the current and voltage sources to obtain the circuit in Fig. 4.18(a). Combining the 4- Ω and 2- Ω resistors in series and transforming the 12-V voltage source gives us Fig. 4.18(b). We now combine the 3- Ω and 6- Ω resistors in parallel to get 2- Ω . We also combine the 2-A and 4-A current sources to get a 2-A source. Thus, by repeatedly applying source transformations, we obtain the circuit in Fig. 4.18(c).

For Example 4.6.

Example 4.6

We use current division in Fig. 4.18(c) to get

$$i = \frac{2}{2+8}(2) = 0.4 \text{ A}$$

and

$$v_o = 8i = 8(0.4) = 3.2 \text{ V}$$

Alternatively, since the 8- Ω and 2- Ω resistors in Fig. 4.18(c) are in parallel, they have the same voltage v_o across them. Hence,

$$v_o = (8 \parallel 2)(2 \text{ A}) = \frac{8 \times 2}{10}(2) = 3.2 \text{ V}$$

Example

- Find *i* (with source transformation)

- Transform the circuit form to the equivalent form
- R2 is the same for both .
- •R2 = 330Ω
- The voltage sources is
- •V2=i2· R2=2mA· 330Ω=0.66V

- Source transformation gave us two resistors in series. The voltage across the series resistors is V1-V2.
- Ohm's Law gives us,
- i=(V1-V2)÷(R1+R2)
- *i*=(3.3-0.66)÷(470+330)
- •<u>i =3.3mA</u>

Example

Find v_x in Figure using source transformation

Solution

Applying KVL around the loop in Fig. (b) gives

 $-3 + 5i + v_x + 18 = 0$

Applying KVL to the loop containing only the 3-V voltage source, the 1- Ω resistor, and v_x yields

 $-3 + 1i + v_x = 0 \implies v_x = 3 - i$

 $15 + 5i + 3 - i = 0 \implies i = -4.5 \text{ A}$ Thus, $v_x = 3 - i = 7.5 \text{ V}$.