

South Valley University Faculty of Engineering Department of Mechanical Engineering

Thermodynamics (2) MPEG 122

Dr. Hussein M. Maghrabie

Thermodynamic Relations

Chapter Contents

The objective of the present chapter is to study Ideal and Real Gases, includes;

- Introduction.
- Fundamental of Partial Differentiation.
- Helmholtz and Gibbs Functions.
- Some General Thermodynamic Relations.
- Internal Energy and Enthalpy of a Perfect Gas.
- Property Relation from Exact Differentials.
- Maxwell Relations.
- Entropy Equations (T.ds Equations).
- Equations for Internal Energy and Enthalpy.
- Measurable Quantities.
 - Equation of State.
 - Coefficients of Expansion and Compressibility.
 - Specific Heats.
 - Alternative Expressions for Internal Energy and Enthalpy.
- Joule-Thomson Coefficient.
- Clausius Claperyon Equation.

Introduction

- □ Eight properties of a system, p, T, v, u, h, s, Helmholtz function (f) and Gibbs function (g)
- h, f and g are sometimes referred to as thermodynamic potentials.
- \square h, f, and g are combinations of properties.
- Both f and g are useful when considering chemical reactions, and the former is of fundamental importance in statistical thermodynamics.
- ☐ The g is also useful when considering processes involving a change of phase.
- Only the first three, i.e., p, v and T are directly measurable.
- Combinations of properties might be called 'thermodynamic gradients'; they are all defined as the rate of change of one property with another while a third is kept constant.

Fundamental of Partial Differentiation

Fundamental of Partial Differentiation

$$f(x, y, z) = 0$$

 $x = x(y, z)$ & $y = y(x, z)$ & $z = z(x, y)$

☐ Let x is a function of two independent variables y and z;

$$x = x(y, z)$$

Then the exact differential is dx;

$$dx = \left(\frac{\partial x}{\partial y}\right)_{z} dy + \left(\frac{\partial x}{\partial z}\right)_{y} dz$$

$$let \qquad \left(\frac{\partial x}{\partial y}\right)_{z} = M \qquad \& \qquad \left(\frac{\partial x}{\partial z}\right)_{y} = N$$

$$then \qquad dx = Mdy + Ndz$$

Partial differentiation of M and N with respect to z and y, respectively, gives;

dx is a perfect differential when eqn. (i) is satisfied for any function x. Similarly if;

$$y = y(x, z) & z = z(x, y)$$

$$dy = \left(\frac{\partial y}{\partial x}\right)_z dx + \left(\frac{\partial y}{\partial z}\right)_x dz \qquad \& \quad dz = \left(\frac{\partial z}{\partial x}\right)_y dx + \left(\frac{\partial z}{\partial y}\right)_x dy$$

$$dy = \left(\frac{\partial y}{\partial x}\right)_z dx + \left(\frac{\partial y}{\partial z}\right)_x \left[\left(\frac{\partial z}{\partial x}\right)_y dx + \left(\frac{\partial z}{\partial y}\right)_x dy\right]$$

$$dy = \left[\left(\frac{\partial y}{\partial x} \right)_z + \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial x} \right)_y \right] dx + \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial y} \right)_x dy$$

$$dy = \left[\left(\frac{\partial y}{\partial x} \right)_z + \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial x} \right)_y \right] dx + dy$$

$$dy = \left[\left(\frac{\partial y}{\partial x} \right)_z + \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial x} \right)_y \right] dx + dy$$

$$\left(\frac{\partial y}{\partial x} \right)_z + \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial x} \right)_y = 0$$

$$\left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial x} \right)_y = -\left(\frac{\partial y}{\partial x} \right)_z$$

$$\left(\frac{\partial x}{\partial y} \right)_z \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial x} \right)_y = -1$$

$$\left(\frac{\partial x}{\partial y} \right)_z = \frac{-1}{\left(\frac{\partial y}{\partial x} \right)_z}$$

- This known as reciprocity relation.
- \square In terms of p, v and T, the following relation holds well;

$$f(x, y, z) = f(p, v, T)$$

$$\left(\frac{\partial p}{\partial v}\right)_T \left(\frac{\partial v}{\partial T}\right)_p \left(\frac{\partial T}{\partial p}\right)_v = -1$$

$$W = Q - (u_0 - u_1)$$

$$W = T. ds - (u_0 - u_1)$$

$$W = T. (s_0 - s_1) - (u_0 - u_1)$$

$$W = (u_1 - T. s_1) - (u_0 - T. s_0) = f_1 - f_0$$

- □ The term (u T.s) is known as **Helmholtz function** (f).
- ☐ This gives maximum possible output when the heat Q is transferred at constant temperature.
- If work against atmosphere is equal to $p_0(v_0 v_1)$, then the maximum work available,

$$W_{max} = W - work \ against \ atmosphere$$

$$W_{max} = W - p_0(v_0 - v_1) = (u_1 - T.s_1) - (u_0 - T.s_0) - p_0(v_0 - v_1)$$

$$W_{max} = (u_1 + p_0.v_1 - T.s_1) - (u_0 + p_0.v_0 - T.s_0)$$

$$W_{max} = (h_1 - T.s_1) - (h_0 - T.s_0)$$

$$W_{max} = g_1 - g_0$$

□ Where (h -T.s) is known as Gibb's function or free energy function (g).

Some General Thermodynamic Relations

☐ The first law applied to a closed system undergoing a reversible process states that;

$$dQ = du + p. dv$$

According to second law;

$$ds = \left(\frac{dQ}{T}\right)_{rev.} \rightarrow T. ds = dQ$$

Combining these equations, we get;

$$T. ds = du + p. dv$$
$$du = T. ds - p. dv$$

- The properties h, f and g may also be put in terms of T, s, p and v as follows:
- The enthalpy can be written as;

e enthalpy can be written as;
$$h = u + pv \rightarrow dh = du + p. dv + v. dp \rightarrow dh = (T. ds - p. dv) + p. dv + v. dp$$
$$dh = T. ds + v. dp$$

Helmholtz free energy function (f);

$$du = T.ds - p.dv$$

$$df = du - s. dT - T. ds = (T. ds - p. dv) - s. dT - T. ds$$

$$df = -p. dv - s. dT$$

Gibb's free energy function (g);

$$g = h - T.s$$

$$dg = dh - T.ds - s.dT$$

$$dg = T.ds + v.dp - T.ds - s.dT$$

$$dg = v.dp - s.dT$$

The principal results of this section are obtained;

$$du = Tds - pdv$$

$$dh = Tds + vdp$$

$$df = -pdv - sdT$$

$$dg = vdp - sdT$$

For present purposes, it is convenient to express them as;

$$x = x(y, z)$$
 and $dx = \left(\frac{\partial x}{\partial y}\right)_z dy + \left(\frac{\partial x}{\partial z}\right)_y dz = Mdy + Ndz$

$$u = u(s, v)$$

$$du = T \cdot ds - p \cdot dv$$

$$du = \left(\frac{\partial u}{\partial s}\right)_{s} ds + \left(\frac{\partial u}{\partial v}\right)_{s} dv$$

$$T = \left(\frac{\partial u}{\partial s}\right)_v$$

$$-p = \left(\frac{\partial u}{\partial v}\right)_{s}$$

$$\left(\frac{\partial u}{\partial s}\right)_v = \left(\frac{\partial h}{\partial s}\right)_p = T$$

$$h = h(s, p)$$

$$dh = T \cdot ds + v \cdot dp$$

$$dh = \left(\frac{\partial h}{\partial s}\right)_{p} ds + \left(\frac{\partial h}{\partial p}\right)_{s} dp$$

$$T = \left(\frac{\partial h}{\partial s}\right)_p$$

$$v = \left(\frac{\partial h}{\partial p}\right)_{s}$$

$$\left(\frac{\partial u}{\partial v}\right)_{S} = \left(\frac{\partial f}{\partial v}\right)_{T} = -p$$

$$f = f(v,T)$$

$$df = -p. dv - s. dT$$

$$df = \left(\frac{\partial f}{\partial v}\right)_T dv + \left(\frac{\partial f}{\partial p}\right)_v dT$$

$$-p = \left(\frac{\partial f}{\partial v}\right)_T$$

$$-s = \left(\frac{\partial f}{\partial p}\right)_{v}$$

$$\left(\frac{\partial h}{\partial p}\right)_{S} = \left(\frac{\partial g}{\partial p}\right)_{T} = v$$

$$g = g(p, T)$$

$$dg = v. dp - s. dT$$

$$dg = \left(\frac{\partial g}{\partial p}\right)_T dp + \left(\frac{\partial g}{\partial T}\right)_p dT$$

$$v = \left(\frac{\partial g}{\partial p}\right)_T$$

$$v = \left(\frac{\partial g}{\partial p}\right)_T$$
$$-s = \left(\frac{\partial g}{\partial T}\right)_p$$

$$\left(\frac{\partial f}{\partial p}\right)_{v} = \left(\frac{\partial g}{\partial T}\right)_{p} = -s$$

The complete group of such relations may be summarized as follows.

$$\left(\frac{\partial u}{\partial s}\right)_{v} = \left(\frac{\partial h}{\partial s}\right)_{p} = T$$

$$\left(\frac{\partial u}{\partial v}\right)_{S} = \left(\frac{\partial f}{\partial v}\right)_{T} = -p$$

$$\left(\frac{\partial h}{\partial p}\right)_{S} = \left(\frac{\partial g}{\partial p}\right)_{T} = v$$

$$\left(\frac{\partial f}{\partial p}\right)_{v} = \left(\frac{\partial g}{\partial T}\right)_{p} = -s$$

Let z is a function of two independent variables x and y;

$$z = z(x, y)$$

Then the exact differential is dz;

$$dz = \left(\frac{\partial z}{\partial x}\right)_{y} dx + \left(\frac{\partial z}{\partial y}\right)_{x} dy$$

$$let \qquad \left(\frac{\partial z}{\partial x}\right)_{y} = M \qquad \& \qquad \left(\frac{\partial z}{\partial y}\right)_{x} = N$$

$$dx = Mdx + Ndy$$

Partial differentiation of M and N with respect to z and y, respectively, gives;

$$\frac{\partial}{\partial y} \left[\left(\frac{\partial z}{\partial x} \right)_y \right]_x = \frac{\partial}{\partial x} \left[\left(\frac{\partial z}{\partial y} \right)_x \right]_y$$
$$\left(\frac{\partial M}{\partial y} \right)_x = \left(\frac{\partial N}{\partial x} \right)_y$$

$$u = u(s, v)$$

$$du = T. ds - p. dv$$

$$du = \left(\frac{\partial u}{\partial s}\right)_{v} ds + \left(\frac{\partial u}{\partial v}\right)_{s} dv$$

$$T = \left(\frac{\partial u}{\partial s}\right)_{v} \qquad and \qquad -p = \left(\frac{\partial u}{\partial v}\right)_{s}$$

So;

$$\left(\frac{\partial v}{\partial T}\right)_p = -\left(\frac{\partial s}{\partial p}\right)_T \dots \dots \dots \dots (v)$$

The equations (i) to (v) are known as Maxwell relations.

Entropy Equations (T.ds Equations)

$$ds = s(T, v)$$

$$ds = \left(\frac{\partial s}{\partial T}\right)_{v} dT + \left(\frac{\partial s}{\partial v}\right)_{T} dv$$

$$T. ds = T \left(\frac{\partial s}{\partial T}\right)_{v} dT + T \left(\frac{\partial s}{\partial v}\right)_{T} dv$$

But for a reversible constant volume change;

$$dQ = c_v \cdot (dT)_v$$

$$c_v = T \cdot \left(\frac{\partial s}{\partial T}\right)_v$$

$$T \cdot ds = c_v \cdot dT + T \left(\frac{\partial p}{\partial T}\right)_v dv$$

This is known as the first form of entropy equation or the first T.ds equation

$$ds = \left(\frac{\partial s}{\partial T}\right)_{p} dT + \left(\frac{\partial s}{\partial p}\right)_{T} dp$$

$$\begin{pmatrix} \frac{\partial v}{\partial T} \end{pmatrix}_{p} - \begin{pmatrix} \frac{\partial s}{\partial p} \end{pmatrix}_{T} dp$$

$$T. ds = T \left(\frac{\partial s}{\partial T}\right)_{p} dT + T \left(\frac{\partial s}{\partial p}\right)_{T} dp$$

But for a reversible constant pressure change;

$$dQ = c_p \cdot (dT)_p = T \cdot (ds)_p$$
$$c_p = T \cdot \left(\frac{\partial s}{\partial T}\right)_p$$

So;

$$Tds = c_p \cdot dT - T\left(\frac{\partial v}{\partial T}\right)_p dp$$

☐ This is known as the second form of entropy equation or the second T.ds equation.

The End of Lecture