Applied thermodynamics

Section 2-2
الأسبوع الأول من نو فق الدر اسة
2.15 An air-water vapor mixture is contained in a rigid, closed vessel with a volume of $35 \mathrm{~m}^{3}$ at 1.5 bar, $120^{\circ} \mathrm{C}$, and $\varnothing=10 \%$. The mixture is cooled at constant volume until its temperature is reduced to $22^{\circ} \mathrm{C}$. Determine the heat transfer during the process, in kJ .

$$
Q=\underline{m_{\mathrm{a}}\left(u_{\mathrm{a} 2}-u_{\mathrm{a} 1}\right)}+\underline{m_{\mathrm{y} 2} u_{\mathrm{g} 2}+m_{\mathrm{w} 2} u_{\mathrm{f} 2}-m_{\mathrm{y} 1} u_{\mathrm{g} 1}}
$$

$$
\Delta U=Q-\not \psi^{0}
$$

$$
Q=U_{2}-U_{1}
$$

$$
U_{1}=m_{\mathrm{a}} u_{\mathrm{al}}+m_{\mathrm{v} \mid} u_{\mathrm{v} 1}=m_{\mathrm{a}} u_{\mathrm{al}}+m_{\mathrm{v} 1} u_{\mathrm{g} 1}
$$

$$
U_{2}=m_{\mathrm{a}} u_{22}+m_{\mathrm{v} 2} u_{\mathrm{v} 2}+m_{\mathrm{a} 2} u_{\mathrm{w} 2}=m_{\mathrm{a}} u_{\mathrm{a} 2}+m_{\mathrm{v} 2} u_{\mathrm{g} 2}+m_{\mathrm{w} 2} u_{f 2}
$$

$$
\begin{aligned}
m_{\mathrm{a}} & =\frac{p_{\mathrm{al} 1} V}{\left(\bar{R} / M_{\mathrm{a}}\right) T_{1}}=\frac{\left[(1.5-0.1985) \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right]\left(35 \mathrm{~m}^{3}\right)}{(8314 / 28.97 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{kg} \cdot \mathrm{~K})(393 \mathrm{~K})} \\
& =40.389 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
v_{v 1} & =\frac{\left(\bar{R} / M_{v}\right) T_{1}}{p_{v 1}}=\left(\frac{8314}{18} \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)\left(\frac{393 \mathrm{~K}}{0.1985 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}}\right) \\
& =9.145 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
m_{\mathrm{v} 1}=\frac{V}{v_{\mathrm{v} 1}} & =\frac{35 \mathrm{~m}^{3}}{9.145 \mathrm{~m}^{3} / \mathrm{kg}}=3.827 \mathrm{~kg} \quad x_{2}=\frac{v_{\mathrm{v} 2}-v_{\mathrm{f} 2}}{v_{\mathrm{g} 2}-v_{\mathrm{f} 2}}=\frac{9.145-1.0022 \times 10^{-3}}{51.447-1.0022 \times 10^{-3}}=0.178 \\
m_{\mathrm{w} 2} & =m_{\mathrm{v} 1}-m_{v 2}=3.82 /-0.081=5.140 \mathrm{~kg} \quad m_{\mathrm{v} 2}=(0.178)(3.827)=0.681 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
Q & =40.389(210.49-281.1)+0.681(2405.7)+3.146(92.32)-3.827(2529.3) \\
& =-2851.87+1638.28+290.44-9679.63=-10.603 \mathrm{~kJ}
\end{aligned}
$$

prob 2.16
Moist air enters a duct at $10^{\circ} \mathrm{C}, 80 \%$ relative humidity, and a volumetric flow rate of $150 \mathrm{~m}^{3} / \mathrm{min}$. The mixture is heated as it flows through the duct and exits at $30^{\circ} \mathrm{C}$. No moisture is added or removed, and the mixture pressure remains approximately constant at I bar. For steady-state operation, determine (a) the rate of heat transfer, in $\mathrm{kJ} / \mathrm{min}$, and (b) the relative humidity at the exit. Changes in kinetic and potential energy can be ignored.

$$
\begin{array}{ll}
\dot{m}_{21}=\dot{m}_{22} & \text { (dry air) } \\
\dot{m}_{\mathrm{v} 1}=\dot{m}_{\mathrm{v} 2} & \text { (water) }
\end{array}
$$

$$
0=\dot{Q}_{c v}-\ddot{y}_{c y}^{0}+\left(m_{\mathrm{d}} h_{\mathrm{al}}+\dot{m}_{\psi} h_{v 1}\right)-\left(m_{\mathrm{L}} h_{\mathrm{a} 2}+m_{y} h_{v 2}\right)
$$

$$
\dot{Q}_{\mathrm{cv}}=\dot{m}_{\mathrm{a}}\left(h_{\mathrm{a} 2}-h_{\mathrm{al}}\right)+\dot{m}_{\mathrm{Y}}\left(h_{\mathrm{Y} 2}-h_{\mathrm{r}}\right)
$$

$$
\dot{Q}_{c \mathrm{v}}=\dot{m}_{\mathrm{a}}\left[\left(h_{\mathrm{a} 2}-h_{\mathrm{a}}\right)+\omega\left(h_{\mathrm{Y} 2}-h_{\mathrm{Y} 1}\right)\right]
$$

To evaluate $Q_{c v}$ from this expression requires the specific enthalpies of the dry air and water vapor at the inlet and exit, the mass flow rate of the dry air, and the humidity ratio.

The specific enthalpies of the dry air are obtained from Table A-22 at the inlet and exit temperatures T_{1} and T_{2}, respectively: $h_{\mathrm{al}}=283.1 \mathrm{~kJ} / \mathrm{kg}, h_{\mathrm{a} 2}=303.2 \mathrm{~kJ} / \mathrm{kg}$. The specific enthalpies of the water vapor are found using $h_{\mathrm{v}} \approx h_{\mathrm{g}}$ and data from Table A-2 at T_{1} and T_{2}, respectively: $h_{\mathrm{g} 1}=2519.8 \mathrm{~kJ} / \mathrm{kg}, h_{\mathrm{g} 2}=2556.3 \mathrm{~kJ} / \mathrm{kg}$.

The mass flow rate of the dry air can be determined from the volumetric flow rate at the inlet $(\mathrm{AV})_{1}$

$$
\begin{gathered}
\dot{m}_{\mathrm{a}}=\frac{(\mathrm{AV})_{\mathrm{l}}}{v_{\mathrm{al}}} \\
v_{\mathrm{al}}=\frac{(\bar{R} / M) T_{1}}{p_{\mathrm{a} 1}} \quad p_{\mathrm{v} 1}=\phi_{\left|p_{\mathrm{g}}\right|}=(0.8)(0.01228 \mathrm{bar})=0.00098 \text { bar }
\end{gathered}
$$

$$
v_{\mathrm{al}}=\frac{\left(\frac{8314}{28.97} \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)(283 \mathrm{~K})}{\left(0.9902 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)}=0.82 \mathrm{~m}^{3} / \mathrm{kg} \quad \dot{m}_{\mathrm{a}}=\frac{150 \mathrm{~m}^{3} / \mathrm{min}}{0.82 \mathrm{~m}^{3} / \mathrm{kg}}=182.9 \mathrm{~kg} / \mathrm{min}
$$

$$
\begin{aligned}
\omega & =0.622\left(\frac{p_{\mathrm{v} 1}}{p-p_{\mathrm{v} 1}}\right)=0.622\left(\frac{0.0098}{1-0.0098}\right) \\
& =0.00616 \frac{\mathrm{~kg} \text { (vapor) }}{\mathrm{kg} \text { (dry air) }}
\end{aligned}
$$

$$
\begin{aligned}
\dot{Q}_{\mathrm{cv}} & =182.9[(303.2-283 . \mathrm{l})+(0.00616)(2556.3-2519.8)] \quad \phi_{2}=\frac{p_{\mathrm{v} 2}}{p_{\mathrm{g} 2}}=\frac{0.0098}{0.04246}=0.231(23.1 \%) \\
& =3717 \mathrm{k} / \mathrm{min}
\end{aligned}
$$

