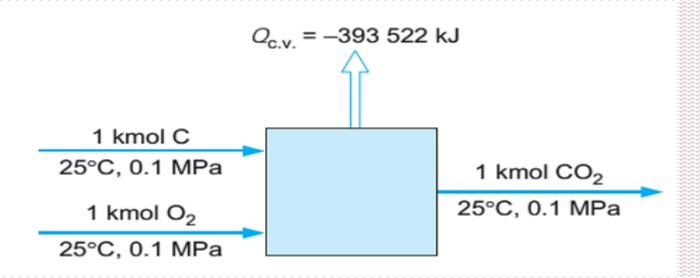


South Valley University Faculty Of Engineering Department Of Mechanical Engineering

Applied Thermodynamics MPEG223

Dr. Hussein M. Maghrabie


Chemical Reactions

Chapter Contents

The objective of the present chapter is to study chemical reaction, includes;

- ☐ The Combustion Process
 - Theoretical Air
 - Air–Fuel Ratio
 - Excess Air
- Analysis of the Products of Combustion
- Enthalpy of Formation
- ☐ First-Law Analysis of Reacting Systems
- Enthalpy and Internal Energy of Combustion; Heat of Reaction
- Heating Value
- Adiabatic Flame Temperature

Enthalpy of Formation

☐ The chemical reaction can be written;

$$C + O_2 \rightarrow CO_2$$

Applying the first law to this process, we have;

$$Q_{c,v} + H_R = H_P$$

$$Q_{c.v} + \sum_{R} n_i \overline{h_i} = \sum_{p} n_e \overline{h_e}$$

- ☐ Thus, a measurement of the heat transfer would give us the difference between the enthalpy of the products and the reactants,
- The value of zero to the enthalpy of all the elements at the reference state.
- In this case, the enthalpy of the reactants is zero, and;

$$Q_{c.v} = H_P = -393522 \, kJ/k \, mol$$

□ The enthalpy of ideal-gas carbon dioxide (CO₂) at 25°C, 0.1 MPa pressure, is called the enthalpy of formation. Thus, for carbon dioxide;

$$\bar{h}_{f,CO2}^{0} = -393\ 522\ kJ/kmol$$

Enthalpy of Formation and Absolute Entropy of Various Substances at 25°C, 100 kPa Pressure

Substance	Formula	<i>M</i> kg/kmol	State	h_f^0 kJ/kmol	$ar{s}_f^0$ kJ/kmol K
Acetylene	C_2H_2	26.038	gas	+226 731	200.958
Ammonia	NH_3	17.031	gas	-45720	192.572
Benzene	C_6H_6	78.114	gas	+82~980	269.562
Carbon dioxide	CO_2	44.010	gas	-393 522	213.795
Carbon (graphite)	С	12.011	solid	0	5.740
Carbon monoxide	CO	28.011	gas	-110 527	197.653
Ethane	C_2H_6	30.070	gas	-84740	229.597
Ethene	C_2H_4	28.054	gas	+52467	219.330
Ethanol	C ₂ H ₅ OH	46.069	gas	-235 000	282.444
Ethanol	C ₂ H ₅ OH	46.069	liq	-277 380	160.554
Heptane	C_7H_{16}	100.205	gas	-187900	427.805
Hexane	C_6H_{14}	86.178	gas	$-167\ 300$	387.979
Hydrogen peroxide	H_2O_2	34.015	gas	$-136\ 106$	232.991
Methane	CH_4	16.043	gas	-74873	186.251
Methanol	CH_3OH	32.042	gas	-201 300	239.709
Methanol	CH_3OH	32.042	liq	$-239\ 220$	126.809
n-Butane	C_4H_{10}	58.124	gas	$-126\ 200$	306.647
Nitrogen oxide	N_2O	44.013	gas	$+82\ 050$	219.957
Nitromethane	CH_3NO_2	61.04	liq	$-113\ 100$	171.80
n-Octane	C_8H_{18}	114.232	gas	-208 600	466.514
n-Octane	C ₈ H ₁₈	114.232	liq	-250 105	360.575
Ozone	O_3	47.998	gas	+142674	238.932
Pentane	C_5H_{12}	72.151	gas	-146500	348.945
Propane	C_3H_8	44.094	gas	-103900	269.917
Propene	C_3H_6	42.081	gas	$+20\ 430$	267.066
Sulfur	S	32.06	solid	0	32.056
Sulfur dioxide	SO_2	64.059	gas	-296842	248.212
Sulfur trioxide	SO_3	80.058	gas	-395 765	256.769
T-T-Diesel	$C_{14.4}H_{24.9}$	198.06	liq	$-174\ 000$	525.90
Water	H ₂ O	18.015	gas	-241 826	188.834
Water	H_2O	18.015	liq	-285 830	69.950

The enthalpy of carbon dioxide (CO₂) in any other state would be found by adding the change of enthalpy between ideal gas at 25°C, 0.1 MPa, and the given state to the enthalpy of formation. That is, the enthalpy at any temperature and pressure, h_{TP}, is;

$$\bar{h}_{T,P} = (\bar{h}_f^0)_{298,0.1 \, MPa} + (\Delta \bar{h})_{298,0.1 \, MPa \to T,P}$$

TABLE A.9

Ideal-Gas Properties of Various Substances (SI Units), Entropies at 0.1-MPa (1-Bar)

Pressure, Mole Basis

T K	Nitrogen, Diatomic (N ₂) $\bar{h}_{f,298}^0 = 0 \text{ kJ/kmol}$ M = 28.013 kg/kmol		Nitrogen, Monatomic (N) $\bar{h}^0_{f,298} = 472680\mathrm{kJ/kmol}$ $M = 14.007\mathrm{kg/kmol}$	
	$(\bar{h}-\bar{h}_{298}^0)$ k.J/kmol	\tilde{s}_T^0 kJ/kmol K	$(\bar{h}-\bar{h}_{298}^0)$ kJ/kmol	s̄ ⁰ kJ/kmol
0	-8670	0	-6197	0
100	-5768	159.812	-4119	130.593
200	-2857	179.985	-2040	145.001
298	0	191.609	0	153.300
300	54	191.789	38	153.429
400	2971	200.181	2117	159.409
500	5911	206.740	4196	164.047
600	8894	212.177	6274	167.837
700	11937	216.865	8353	171.041
800	15046	221.016	10431	173.816
900	18223	224.757	12510	176.265
1000	21463	228.171	14589	178.455
1100	24760	231.314	16667	180.436
1200	28109	234.227	18746	182.244
1300	31503	236.943	20825	183.908
1400	34936	239.487	22903	185.448
1500	38405	241.881	24982	186.883
1600	41904	244.139	27060	188.224
1700	45430	246.276	29139	189.484
1800	48979	248.304	31218	190.672
1900	52549	250.234	33296	191.796

First-Law Analysis of Reacting Systems

□ the first law for a steady-state, steady-flow process in the form;

$$Q_{c.v} + H_R = W_{c.v} + H_P$$

$$Q_{c.v} + \sum_{R} n_i \overline{h_i} = W_{c.v} + \sum_{p} n_e \overline{h_e}$$

Tutorial 3: First law of thermodynamics

Consider the following reaction, which occurs in a steady-state, steady-flow process.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2 H_2O (liq.)$$

The reactants and products are each at a total pressure of 0.1 MPa and 25°C. Determine the heat transfer per kmole of fuel entering the combustion chamber.

Solution:

Applying the First law of thermodynamics;

$$Q_{c.v} + \sum_{R} n_i \overline{\mathbf{h}_{\mathrm{i}}} = \sum_{p} n_e \overline{\mathbf{h}_{\mathrm{e}}}$$

$$\sum_{R} n_i \overline{h_i} = \left(\overline{h_f^0}\right)_{CH_4} = -74873 \, kJ$$

$$\sum_{p} n_e \overline{h_e} = (n \, \overline{h_f^0})_{CO_2} + (n \, \overline{h_f^0})_{H_2O} = -393522 + 2(-285830) = -965182 \, kJ$$

$$Q_{c.v} = -965182 + 74873 = -890309 \, kJ$$

Tutorial 4: First law of thermodynamics

A small gas turbine uses $C_8H_{18}(L)$ for fuel and 400% theoretical air. The air and fuel enter at 25°C, and the products of combustion leave at 900 K. The output of the engine and the fuel consumption are measured, and it is found that the specific fuel consumption is 0.25 kg/s of fuel per megawatt output. Determine the heat transfer from the engine per kmole of fuel.

Solution:

☐ The theoretical combustion equation is;

$$C_8H_{18} + v_{O_2}(O_2 + 3.76N_2) \rightarrow v_{CO_2} CO_2 + v_{H_2O}H_2O + v_{N_2}N_2$$

$$C_8H_{18} + 12.5(O_2 + 3.76N_2) \rightarrow 8CO_2 + 9H_2O + 47N_2$$

$$C_8H_{18} + 12.5(O_2 + 3.76N_2) \rightarrow 8CO_2 + 9H_2O + 47N_2$$

☐ The actual combustion equation is;

$$C_8H_{18} + 4 * 12.5(O_2 + 3.76N_2) \rightarrow 8 CO_2 + 9H_2O + 3 * 12.5O_2 + 188 N_2$$

Applying the First law of thermodynamics;

$$Q_{c.v} + \sum_{R} n_i \overline{h_i} = W_{c.v} + \sum_{p} n_e \overline{h_e}$$

$$Q_{c.v} + \sum_{R} n_i (\bar{h}_f^0 + \Delta \bar{h})_i = W_{c.v} + \sum_{p} n_e (\bar{h}_f^0 + \Delta \bar{h})_e$$

$$\sum_{P} n_i (\bar{h}_f^0 + \Delta \bar{h})_i = (\bar{h}_f^0)_{C_8 H_{18}} = -250 \ 105 \frac{kJ}{kmol}$$

		M		\bar{h}_f^0	\bar{s}^0_f
Substance	Formula	kg/kmol	State	kJ/kmol	kJ/kmol K
<i>n</i> -Octane	C ₈ H ₁₈	114.232	liq	-250 105	360.575

$$C_8H_{18} + 4 * 12.5(O_2 + 3.76N_2) \rightarrow 8 CO_2 + 9H_2O + 3 * 12.5O_2 + 188 N_2$$

$$\sum_{p} n_{e} (\bar{h}_{f}^{0} + \Delta \bar{h})_{e} = n_{CO_{2}} (\bar{h}_{f}^{0} + \Delta \bar{h})_{CO_{2}} + n_{H_{2}O} (\bar{h}_{f}^{0} + \Delta \bar{h})_{H_{2}O} + n_{O_{2}} (\bar{h}_{f}^{0} + \Delta \bar{h})_{O_{2}} + n_{N_{2}} (\bar{h}_{f}^{0} + \Delta \bar{h})_{N_{2}}$$

$$= 8(-393522 + 28030) + 9(-241826 + 21937) + 37.5(19241) + 188(18223) = -755476 \frac{kJ}{kmol}$$

$$W_{c.v} = \frac{1000}{0.25} * 114.23 = 456 920 \, kJ/k \, mol$$

$$Q_{c.v} - 250\ 105 = 456\ 920\ - 755\ 476$$

 $Q_{c.v} = -48\ 451\ kJ\ /kmol$

	$\bar{h}_{f,298}^{0} =$	Diatomic (N ₂) : 0 kJ/kmol 013 kg/kmol	$\bar{h}_{f,298}^0 = 472$	fonatomic (N) 2 680 kJ/kmol 007 kg/kmol
T K	$(\bar{h}-ar{h}_{298}^0)$ kJ/kmol	š⁰ kJ/kmol K	$(\hbar\!-\!{\color{red}h}_{298}^0)$ kJ/kmol	š ⁰ kJ/kmol
900	18223	224.757	12510	176.265

Enthalpy and Internal Energy of Combustion; Heat of Reaction

The enthalpy of combustion, h_{RP}, is defined as the difference between the enthalpy of the products and the enthalpy of the reactants when complete combustion occurs at a given temperature and pressure.

$$Q_{c.v} + \sum_{R} n_i \overline{h_i} = \sum_{p} n_e \overline{h_e} \rightarrow Q_{c.v} = \overline{h}_{PR} = H_p - H_R$$

$$\bar{h}_{PR} = \sum_{p} n_{e} (\bar{h}_{f}^{0} + \Delta \bar{h})_{e} - \sum_{R} n_{i} (\bar{h}_{f}^{0} + \Delta \bar{h})_{i}$$

☐ The internal energy of combustion is defined in a similar manner.

$$Q_{c.v} + \sum_{R} n_i \overline{U}_i = \sum_{p} n_e \overline{U}_e$$

$$\bar{u}_{PR} = \sum_{p} n_e (\bar{h}_f^0 + \Delta \bar{h} - \bar{R}T) - \sum_{R} n_i (\bar{h}_f^0 + \Delta \bar{h} - \bar{R}T)$$

Heating Value

- ☐ This represents the heat transferred from the chamber during combustion/reaction at constant temperature.
- ☐ In the case of a constant pressure or steady-flow process, it is equal to the negative of the enthalpy of combustion.
- ☐ In the case of a constant_volume process, the heat transfer is equal to the negative of the internal energy of combustion.
- When the term heating value is used, the terms higher and lower heating value are used.
- ☐ The higher heating value is the heat transfer with liquid water in the products,
- ☐ The lower heating value is the heat transfer with vapor water in the products.

Adiabatic Flame Temperature

- Consider a given combustion process that takes place adiabatically and with no work or changes in kinetic or potential energy involved.
- ☐ For such a process the temperature of the products is referred to as the adiabatic flame temperature.
- ☐ For a given fuel and given pressure and temperature of the reactants, the maximum adiabatic flame temperature that can be achieved is with a stoichiometric mixture.
- ☐ The adiabatic flame temperature can be controlled by the amount of excess air that is used.
- This is important, for example, in gas turbines, where the maximum permissible temperature is determined by metallurgical considerations.

The End of Lecture