
Mechanics of Materials

Chapter 5
Stresses In Beams



5.1 Introduction
In previous chapters, the stresses in bars caused by axial loading 
and torsion. Here consider the third fundamental loading : 
bending. 
Make certain simplifying assumptions. the resulting equations 
have served well in the design of straight, elastic beams



5.2  Bending Stress
a. Simplifying assumptions

The stresses caused by the bending moment are known as
bending stress, or flexure stresses. The relationship between 
these stresses and the bending moment is called the flexure 
formula. 

In deriving the 
flexure formula, 
make the following 
assumptions: 
The beam has an 
axial plane of 
symmetry, which we 
take to be the xy-
plane (see Fig. 5.1). 

Figure 5.1  Symmetrical beam with loads
lying in the plane of symmetry. 



The applied loads (such as F1,F2 and F3 in Fig.5.1) lie in the 
plane of the symmetry and are perpendicular to the axis of the 
beam (the x-axis).The axis of the beam bends but does not 
stretch ( the axis lies some where in the plane of symmetry; its 
location will be determined later). 

Plane sections of 
the beam remain 
plane (do not warp 
) and perpendicular 
to the deformed 
axis of the beam. 
Change in the 
cross-sectional 
dimensions of the 
beam are 
negligible. 

Figure 5.1 Symmetrical beam



Because the shear stresses caused by the vertical shear force will 
distort (warp) an originally plane section, we are limiting our 
discussion here to the deformations caused by the bending 
moment alone.
the deformations due to the vertical shear force are negligible in 
the slender beams compared to the deformations caused by 
bending .



The above assumptions lead us to the following conclusion: 
Each cross section of the beam rotates as a rigid entity about a
line called the neutral axis of the cross section.
The neutral axis passes through the axis of the beam and is 
perpendicular to the plane of symmetry, as shown in Fig. 5.1. 
The xz-plane that contains the neutral axes of all the cross 
sections is known as the neutral surface of the beam. 



Figure 5.2  Deformation of an infinitesimal beam segment.
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b. Compatibility
The neutral surface becomes curved upon deformation, as 
indicated in Fig.5.2.
The longitudinal fibers lying on the neutral surface are 
undeformed, whereas the fibers above the surface are compressed 
and the fibers below are stretched.
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The fiber form are arc a' b' of radius (ρ-y) , subtended by the 
angle dθ, its deformed length is 

The original length of this fiber is                            The normal 
strain ε of the fiber 

( ) θρ dyba −=''

.θρddxab ==

( )
ρθρ

θρθρε y
d

ddy
ab

abba
−=

−−
=

−
=

''



Assuming that the stress is less than the proportional limit of the 
material we can obtain the normal stress in the fiber ab from 
Hook＇s law: 

(5.1)
Equation (5.1) shown that the normal stress of a longitudinal 
fiber is proportional to the distance y of the fiber from the neutral 
surface.
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The negative sign indicates that 
positive bending moment causes 
compressive stress when y is 
positive (fiber above the neutral 
surface) and tensile stress when y
is negative (fiber below the neutral 
surface).



c. Equilibrium
Figure 5.3 shows the normal 
force acting on the 
infinitesimal area dA of the 
cross section is dP = σ dA. 
Substituting σ = - (E/ ρ )y, 

(a)

Where y is the distance of dA
from the neutral axis (NA). 
The resultant of the normal 
stress distribution over the 
cross section must be equal to 
the bending moment M acting 
about the neutral axis (z-axis). 

Figure 5.3  Calculating the 
resultant of the Normal 
stress acting on the cross 
section.  Resultant is a 
couple Equal to the internal 
bending moment of M.

ydAEdP
ρ

−=



In other work, 

where the integral is taken over 
the entire cross-sectional area A

∫ =−
A

Mydp

the resultant axial force and the 
resultant bending moment about 
the y-axis must be zero; that is,

and
These three equilibrium equations 
are developed in detail below. 
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Resultant Axial Force Must Vanish  The condition for zero 
axial force is
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Resultant Moment About y-Axis Must Vanish

This condition is

Because E / ρ≠ 0, this equation can be satisfied only if 

(b)

The integral in Eq.(b) is the first moment of the cross-sectional 
area about the neutral axis. It can be zero only if the neutral axis 
passes through centroid C of the cross-sectional area. 
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The integral in Eq.(b) is the 
product of inertia of the cross-
sectional area. 
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Resultant Moment About the Neutral Axis Must Equal M
Equating the resultant moment about the z-axis to M

Recognizing that                     is the moment of inertia of the cross-
sectional area about the neutral axis ( the z-axis), we obtain the 
moment curvature relationship

(5.2a)

A convenient form of this equation is 

(5.2b)
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The maximum value of bending 
stress without regard to its sign is 
given by

(5.4a)
where c is the distance from the 
neutral axis to the outermost point 
of the cross section.

d.  Flexure formula; section modulus

Substituting the expression for 1/ρ from Eq.(5.2) into Eq. (5.1),    
we get the flexure formula :

(5.3)
Note that a positive bending moment M causes negative 
(compressive) stress above the neutral axis and positive ( tensile) 
stress below the neutral axis
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Equation (5.4a) is frequently written in the form

(5.4b)

where S = I / c is called the section modulus of the beam. The 
dimension of S is [L3], so that its units are in.3, mm3, and so on. 
The formulas for the section moduli of common cross sections are 
given in Fig. 5.4. 
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Figure 5.4  
Section moduli
of simple cross 
sectional 
shapes.



Figure 5.4  Section 
moduli of 
simple cross 
sectional 
shapes.

The section 
moduli of 
standard 
structural 
shapes are 
listed in 
various 
handbooks; an 
abbreviated list 
is given in 
Appendix B. 
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e. Procedures for determining bending stresses 
Stress at a Given Point

• Use the method of sections to determine the bending moment M
at the cross section containing the given point. 

• Determine the location of the neutral axis.
• Compute the moment of inertia I of the cross- sectional area

about the neutral axis. ( If the beam is standard structural shape, 
its cross- sectional properties are listed in Appendix B. P501)

• Determine the y-coordinate of the given point. Note that y is 
positive if the point lies above the neutral axis and negative if it 
lies below the neutral axis. 

• Compute the bending stress from σ = -My / I. If correct sign 
are used for M and y, the stress will also have the correct sign 
(tension positive compression negative).  



Maximum Bending Stress: Symmetric Cross Section
If the neutral axis is an axis of symmetric of the cross section, the 
maximum tensile and compression bending stresses are equal in 
magnitude and occur at the section of the largest bending 
moment. The following procedure is recommended for 
determining the maximum bending stress in a prismatic beam: 

• Draw the bending moment diagram by one of the methods 
described in Chapter 4. Identify the bending moment Mmax that 
has the largest magnitude (disregard the sign)

• Compute the moment of inertia I of the cross- sectional area
about the neutral axis. ( If the beam is a standard structural shape, 
its cross- sectional properties are listed in Appendix B.) 

• Calculate the maximum bending stress from σmax = [Mmax]c / I, 
where c is the distance from the neutral axis to the top or bottom 
of the cross section .



Maximum Tensile and Compressive Bending Stresses: 

Unsymmetrical Cross Section

If the neutral axis is not an axis of symmetry of the cross 
section, the maximum tensile and compressive bending 
stresses may occur at different sections.

• Draw the bending moment diagram. Identify the largest 
positive and negative bending moments.

• Determine the location of the neutral axis and record the 
distances ctop and cbot from the neutral axis to the top and 
bottom of the cross section. 

• Compute the moment of inertia I of the cross section about 
the neutral axis.



• Calculate the bending stresses at the top and bottom of the 
cross section where the largest positive bending moment
occurs from σ = -My / I.
At the top of the cross section, where y = ctop,we obtain σtop = 
-Mctop/ I.
At the bottom of the cross section, we have y = - cbot, so that 
σbot = Mcbop/ I. 

• Repeat the calculations for the cross section that carries the 
largest negative bending moment.

• Inspect the four stresses thus computed to determine the 
largest tensile (positive) and compressive (negative) bending 
stresses in the beam.



Note on Units 
the units of terms in the flexure formula σ = -My / I. 
In the U.S. Customary system, M is often measured in pound-feet
and the cross sectional properties in inches, It is recommended 
that you convert M into lb·in. and compute σ in lb/in.2 (psi). 
Thus, the units in the flexure formula become 

In SI system, M is usually expressed in N · m, whereas the cross-
sectional dimensions are in mm. To obtain σ in N/m2 (Pa), he 
cross sectional properties must be converted to meters, so that the 
units in the flexure equation are
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Sample Problem 5.1
The simply supported beam in Fig. (a) has a rectangular cross 
section 120 mm wide and 200 mm high. (1) Compute the 
maximum bending stress in the beam. (2) Sketch the bending 
stress distribution over the cross section on which the maximum 
bending stress occurs. (3) Compute the bending stress at a point
on section B that is 25 mm below the top of the beam. 



Solution
Preliminary Calculations 
The shear force and bending moment 
diagrams. M max = +16 kN·m, 
occurring at D. The neutral axis (NA)
is an axis of symmetry of the cross 
section as shown in Fig. (a). The 
moment of inertia of the cross section 
about the neutral axis is
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and the distance  c 
between the neutral axis 
and the top (or bottom) 
of the cross section is c 
= 100 mm = 0.1 m. 



Part 1
The maximum bending stress in the beam on the cross section that 

carries the largest bending moment, which is the section at D. 

Answer

Part 2

The stress distribution on the cross section at D is shown in Fig. (d)
(i) The bending stress varies linearly with distance from the neutral 

axis; 
(ii) Because M max is positive, the top half of the cross section is in 

compression and the bottom half is in tension. 
(iii)Due to symmetry of the cross section about the neutral axis, the

maximum tensile and compressive stresses are equal in 
magnitude.  
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Part 3

From Fig. (c) we see that the bending moment at section B is M = + 
9.28 kN·m. The y-coordinate of the point that lies 25 mm below the 
top of the beam is y = 100 -25 = 75 mm = 0.075 m. 

Answer

The negative sign indicates that this bending stress is compressive, 
which is expected because the bending moment is positive and the
point of interest lie above the neutral axis. 
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Sample Problem 5.2
The simply supported beam in Fig. (a) has the T-shaped cross 
section shown. Determine the values and locations of the maximum
tensile and compressive bending stresses. 



Solution
Preliminary Calculations
Find the largest positive 
and negative bending 
moment.  The results are 
shown in Fig. (a)-(c). From 
Fig.(c), the largest positive 
and negative bending 
moment are 3200 lb·ft and 
4000 lb·ft respectively. 



As shown in Fig.(d), the cross section to be composed of the two 
rectangles with areas A1 = 0.8(8) = 6.4 in.2 and A2 = 0.8 (6) = 4.8 
in.2 . The centroidal coordinates of the areas are               and               
, measured from the bottom of the cross section. The coordinate 
of the centroid C of the cross section is 

Compute the moment of inertia I of the cross-sectional area about 
the neutral axis. Using the parallel-axis theorem, I =               
where                       is the moment of inertia of a rectangle about its 
own centroidal axis Thus, 
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Maximum Bending stresses
The distances from the neutral axis to the top and the bottom of
the cross section are                                           and                       
as shown in Fig.(c). Because these distances are different, we 
must investigate stresses at two locations: at x = 4 ft (where the 
largest positive bending moment occurs) and at x = 10 ft (where 
the largest negative bending moment occurs). 
Stresses at x = 4 ft The bending moment at this section is M = 
+3200 lb．ft causing compression above the neutral axis and 
tension below the axis. The resulting bending stresses at the top 
and bottom of the cross section are 
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Stresses at x = 10 ft The bending moment at this section is M = -
4000lb．ft, resulting in tension the neutral axis and compression 
below the neutral axis. The corresponding bending stresses at the 
extremities of the cross section are 

Inspecting the above results, we conclude that the maximum tensile
and compressive stresses in the beam are 

( σT )max =  2580 psi ( bottom of the section at x = 4 ft )

( σc )max =  3230 psi ( bottom of the section at x = 10 ft ) 
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Sample Problem 5.3
The cantilever beam in 
Fig. (a) is composed of 
two segments with 
rectangular cross 
sections. The width of 
the each section is 2 in., 
but the depths are 
different, as shown in the 
figure. Determine the 
maximum bending stress
in the beam. 



Solution 
Because the cross section 
of the beam is not 
constant, the maximum 
stress occurs either at the 
section just to the left of B
(MB = - 8000 lb．ft) or at 
the section at D (MD = -
16000 lb．ft). the section 
moduli of the two 
segments are 
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From Eq. (5.4b) the maximum bending stresses on the two cross 
sections of the interest are 

Comparing the above values, we find that the maximum bending 
stress in the beam is
σmax = 18000 psi (on the cross section just to the left of B)

Answer
This is an example where the maximum bending stress occurs 
on a cross section at the bending moment is not maximum. 
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Sample Problem 5.4
The wide- flange section W 14×30 is use as a cantilever beam, as 
shown in Fig.(a). Find the maximum bending stress in the beam. 

Solution  
The largest bending moment is 
∣Mmax∣= 15000 lb · ft acting 
just to the left of section B. 
From the tables in Appendix B, 
we find that the section 
modulus of a W14×30 (P520) 
section is S = 42.0 in.3.
Therefore, the maximum 
bending stress in the beam is 
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5.3   Economic Sections
The portions of a located near the neutral surface are 
understressed compared with at the top or bottom. Therefore, 
beams with certain cross- sectional shape ( including a 
rectangle and circle) utilize the material inefficiently because
much of the cross section contributes little to resisting the 
bending moment. 
Consider, for example, in Fig. 5.5(a) The 
section modulus has increased to S = bh2/6 = 
2(6)2/6 = 12 in.3. If working stress is σw = 
18 ksi, the maximum safe bending moment 
for the beam is M =σw · S =18 (12) = 216 
kip·in.

Figure 5.5  Different ways to distribute the 12-in.2 cross-
sectional area in (a) without changing the depth.



In Fig. 5.5(b), we have rearranged the area of the cross section but 
kept the same overall depth. It can be shown that the section that 
the section modulus has increased to S = 25.3 in.3（the parallel-
axis theorem）. Thus, the new maximum allowable moment is M 
= 18 (25.3) = 455 kip·in., which is more than twice the allowable 
moment for the rectangular section of the same area. 
The section in Fig. 5.5(b) is not practical because its two parts, 
called the flanges. As in Fig. 5.5(c). The vertical connecting piece 
is known as the web of the beam. The web functions as the main 
shear-carrying component of the beam. 



a.  Standard structural shapes
Figure 5.5 (c) is similar to a wide-flange beam, referred to as a 
W-shape. Another “slimmer”version of the shape is the I-beam
(referred to as an S-shape) shown in Fig. 5.5(d). The I-beam 
preceded the wide- flange beam, but because it is not as 
efficient, it has largely been replaced by the wide- flange beam. 



Properties of W-and S-shapes are given in Appendix B. 
in SI units, the designation W610×140 indicates a wide-flange 
beam with a nominal depth of 610mm and a nominal mass per 
unit length of 140 kg/m. The tables in Appendix B indicates the 
actual depth of the beam is 617 mm and the actual mass is 140.1 
kg/m. 
In U.S. Customary units, a W36×300 is a wide-flange beam with 
a nominal depth 36 in. that weighs 300 lb/ft. The actual depth of 
this section is 36.74 in. 
Referring to Appendix B, in addition to listing the dimensions, 
tables of structural shapes give properties of the cross-sectional 
area, such as moment of inertia (I), section modulus (S), and 
radius of gyration (r)4 for each principal axis of the area. 



When a structural section is selected to be used as a beam. The 
section modulus must be equal to or greater than section 
modulus determined by the flexure equation; that is,

(5.5)

the section modulus of the selected beam must be equal to or 
greater than the ratio of the bending moment to the working 
stress.

If a beam is very slender (large L/r), it may fail by lateral 
bucking before the working stress is reached. I-beams are 
particularly vulnerable to lateral bucking because of their low 
torsional rigidity and small moment of inertia about the axis 
parallel to the web. 
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b.   Procedure for selecting standard shapes 
A design engineer is often required to select the lightest
standard structural shape ( such as a W-shape) that can carry a 
given loading in addition to the weight of the beam. Following 
is an outline of the selection process;

．Neglecting the weight of the beam, draw the bending moment 
diagram to find the largest bending moment Mmax..

．Determine the minimum allowable section modulus from Smin =
｜Mmax.︱/σw, is the working stress.

．Choose the lightest shape from the list of structural shapes (such 
as a Appendix B) for which S≥Smin and note its weight.

．Calculate the maximum bending stress σmax in the selected 
beam caused by the prescribed loading plus the weight of the 
beam. Ifσmax≤σw, the selection is finished. Otherwise, the 
second-lightest shape with S≥Smin must be considered and the 
maximum bending stress recalculated. The process must be 
repeated unit a satisfactory shape is found.



Sample Problem 5.5 

What is the lightest W-shape beam that will support the 45-kN 
load shown in Fig. (a) without exceeding a bending stress of 120
MPa？Determine the actual bending stress in the beam. 

Solution  
Finding the reactions 
shown in Fig.(a), and 
sketch the shear force 
and bending moment 
diagrams in Figs. (b) 
and (c). 



The minimum bending acceptable section modulus that can carry 
this moment is 
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Referring to the table of Properties of W-shape (Appendix B SI 
Unit) and find that the following are the lightest beams in each size 
group that satisfy the requirement S≥Smin: (P508)

Section S(mm3)  Mass(kg/m)

W200×52     512×103 52.3

W250×45     534×103 44.9

W310×39     549×103 38.7

Our first choice is the W310×39 
section with S = 549×10-6 m3. 

The reason is that although 
the lightest beam is the 
cheapest on the basis of the 
weight alone, headroom 
clearances frequently require 
a beam with less depth than 
the lightest one. 



The weight of the beam for the W310×39 section is
wo = (38.7 kg/m)×(9.81 m/s2) = 380 N/m = 0.380 kN/m

From  (d) shows the beam supporting both the 45-kN load and
the weight of the beam. The maximum bending moment is 
found to be Mmax = 61.52 kN·m, again occurring under the 
concentrated load.

Therefore, the maximum 
bending stress in the 
selected beam is 
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Because this stress is less than the allowable stress of 120 MPa, 
the lightest W-shape that can safely support the 45-kN load is 

W310×39  (with σmax = 112.1MPa) Answer



5.4  Shear Stress in Beams
a. Analysis of flexure action

In Fig. 5.6, The separate layers would slide past one another, and 
the total bending strength of the beam would be the sum of the 
strength of the individual layers. Such a built-up beam would be 
considerably weaker than a solid beam of equivalent dimensions.
From the above observation, we conclude that the horizontal 
layers in a solid beam are prevented from sliding by shear stresses
that act between the layers.  

Figure 5.6  Bending of a layered beam with no adhesive 
between the layers.



In Fig. 5.7. We isolate the shaded portion of the beam by 
using two cutting planes: a vertical cut along section 1
and horizontal cut located at the distance y’ above the 
neutral axis. 

Figure 5.7  Equilibrium of the shaded portion of the beam 
requires a longitudinal shear force F = P, where 
P is the resultant of the normal stress acting on 
area A’ of section (1).



Calculate P using Fig. 5.8. The axial force acting on the area 
element dA of the cross section is dP = σdA.

If M is the bending moment acting at section 1 of the beam, 
the bending stress is given by Eq. (5.3): σ= - My/I, where y is 
the distance of the element from the neutral axis, and I is the 
moment of inertia of the entire cross-sectional area of the 
beam about the neutral axis. 

Figure 5.8  
Calculating the 
resultant force 
of the normal 
stress over a 
portion of the 
cross-sectional 
area.



Integrating over the area A’, we get

(5.6)

Where    

(5.7a)

is the first moment of area A’ about the neutral axis. The negative
sign in Eq. (5.6) indicates that positive M results in forces P and F
that are directed opposite to those shown in Fig. 5.7. 
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Denoting the distance between the neutral axis and centroid
C` of the area A’ by      , we can write Eq. (5.7) as 

(5.7b). ′
= yAQ `

′
y

In Eqs. (5.7b), Q represents the first 
moment of the cross-sectional area 
that lies above y’. Because the first 
moment of the total cross-sectional 
area about the neutral axis is zero, 
that first moment of the area below
y’ is - Q. Therefore, the magnitude 
of Q can be computed by using the 
area either above or below y’, 
whichever is more convenient.

′
y`



Figure 5.9  Variation of the first moment Q of area A’ about 
the    neutral axis for a rectangular cross section.

The maximum value of Q occurs at the neutral axis where 
y’ = 0. It follows that horizontal shear force F is largest on 
the neutral surface. The variation of Q with y’ for a 
rectangular cross section is illustrated in Fig. 5.9. 



b.  Horizontal shear stress 
Consider Fig. 5.10. A horizontal plane located a distance y’ above 
the neutral axis of the cross section. If the bending moment at 
section1 of the beam is M, the resultant force acting on face 1 of the 
body is given by Eq. (5.6):

ττ

Figure 5.10  Determining the longitudinal shear stress from the 
free-body diagram of a beam element.
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The bending moment acting at section 2 is M+dM, where dM is 
the infinitesimal change in M over the distance dx. Therefore, 
the resultant normal force acting on face 2 of the body is 
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Equilibrium can exist only if there is an equal and opposite shear 
force dF acting on the horizontal surface. If we letτbe the 
average shear stress acting on the horizontal surface, its 
resultant is dF = τbdx. Where b is the width of the cross section 
at y = y`, as shown in Fig. 5.10. The equilibrium requirement for 
the horizontal forces is 

ΣF = 0 :  (P +dP)－P +τb dx = 0 

ττ

I
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Substituting for(P+dP) - P from Eq. (a), we get 

(b)

Recalling the relationship V = dM/dx between the shear force and 
the bending moment we obtain for the average horizontal shear 
stress τ

(5.8)
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c.  Vertical shear stress

Eq. (5.8)               ( a plane parallel to the neutral surface ). A 
shear stress is always accompanied by a complementary shear 
stress of equal magnitude, the two stresses acting on mutually 
perpendicular plane. 

Ib
VQ

=τ
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Figure 5.11  The vertical stress τ’ acting at a point on a cross 
section equals the longitudinal shear stress τ acting at 
the same point.



The resultant of the vertical shear stress on 
the cross-sectional area A of the beam is,of 
course, the shear force V;. 

In a beam, the complementary stress τ’ is a vertical shear stress
that acts on the cross section of the beam, as illustrated in Fig. 
5.11 (a). Because τ=τ’, Eq.(5.8) can be used to compute the 
vertical as well as the horizontal shear stress at a point in a 
beam. 

∫=
A

dAV τ

To prove that τ=τ`, consider Fig. 5.11(b). 
The horizontal and vertical forces are τdxdz
and τ’dydz, respectively. These forces from 
two couples of opposite sense. For rotational 
equilibrium, the magnitudes of the couples 
must be equal; that is, (τdxdz) dy = 
(τ`dydz) dx, which yields τ= τ’. 

g gg g



d.  Discussion and limitations of the shear stress formula

• The shear stress formula τ= VQ/(Ib) predicts that the largest 
shear stress in a prismatic beam occurs at the cross section 
that carries the largest vertical shear force V.

• The location ( the value of y’ ) of the maximum shear stress
within that section is determined by the ratio Q/b. Because Q
is always maximum at y’ = 0, the neutral axis is usually a 
candidate for the location of the maximum shear stress.

• However, If the width b at the neutral axis is larger than at 
other parts of the cross section, it is necessary to compute τ
at two or more values of y’ before its maximum value can be 
determined.



When deriving the shear stress formula, Eq. (5.8),              
τ should be considered at the average shear stress. This 
restriction is necessary because the variation of the shear 
stress across the width b the cross section is often unknown. 

Equation (5.8) is sufficiently accurate for rectangular cross 
sections and for cross sections that are composed of 
rectangles, such as W and S-shapes. 

Let us consider as an example the 
circular cross section in Fig. 5.12. 

Figure 5.12  Shear stress 
distribution along a 
horizontal line of a 
circular cross section.Ib

VQ
=τ

Ib
VQ

=τ



It can be shown that the shear 
stress at the periphery of the 
section must be tangent to the 
boundary, as shown in the figure. 

The direction of shear stresses at 
interior points is unknown, except 
at the centerline, where the stress is 
vertical due to symmetry. To 
obtain an estimate of the maximum 
shear stress, the stresses are 
assumed to be directed toward a 
common center B, as shown. 

Figure 5.12  Shear stress 
distribution along a 
horizontal line of a 
circular cross section.

For other cross- sectional shapes, however, the formula for τ
must be applied with caution. Let us consider as an example 
the circular cross section in Fig. 5.12.



The vertical components of these shear stresses are assumed 
to be uniform across the width of the section and are 
computed from Eq. (5.8). Under this assumption, the shear 
stress at the neutral axis is 1.333V/ (πr2 ). (4/3)(V/ πr2 )

A more elaborate analysis shows that the shear stress actually 
varies from 1.23 V/ (πr2 ) at the edges to 1.38 V/ (πr2 ) at the 
center.

Shear stress, like normal stress, exhibits stress concentrations
near shape corners, fillets and holes in the cross section. The 
junction between the web and the flange of a W-shape is also 
an area of stress concentration. 



e. Rectangular and wide-flange sections
Determine the shear stress as a function of y for a rectangular cross 
section of base b and height h. From Fig. 5.13, the shaded area is 
A’ = b [(h/2)-y], its centroidal coordinate being 

ττ
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Figure 5.13  Shear stress distribution on a rectangular cross 
section.



(c) 

The shear stress is distributed parabolically across the depth of 
the section, as shown in Fig.5.13. The maximum shear stress 
occurs at the neutral axis. If we substitute y = 0 and I =bh3/12, 
Eq. (c) reduces to 

(5.9)

where A is the cross –sectional area.
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The shear stress in 
rectangular section is 50% 
greater than the average 
shear stress on the cross 
section.



In wide-flange sections (W-shapes), most of the bending 
moment is carried by the flanges, whereas the web resists the 
bulk of the vertical shear force. Figure 5.14. Q is contributed 
mainly by the flanges of the beam. Consequently, Q does not 
vary with y, so that the shear stress in the web is almost 
constant. 

In fact τmax = V/Aweb can be used as an approximation to the 
maximum shear stress in most cases, where Aweb is the cross-
sectional area of the web.

ττ

Figure 5.14  Shear 
Stress distribution 
on the web of a 
wide-flange beam.



a. Procedure for analysis of shear stress:
．Use equilibrium analysis to determine the vertical shear force 

V acting on the cross section containing the specified point ( 
the construction of a shear force diagram is usually a good 
idea).

．Locate the neutral axis and compute the moment of inertia I
of the cross- sectional area about the neutral axis (If the 
beam is a standard structural shape, its cross- sectional 
properties are listed in Appendix B.)

．Compute the first moment Q of the cross- sectional area that 
lies above (or below)the specified point.

．Calculate the shear stress from τ = VQ/(Ib), where b is the 
width of the cross section at the specified point. 



The maximum shear stressτmax on a given cross section 
occurs where Q/b is largest.

If the width b is constant, then τmax occurs at the neutral 
axis because that is where Q has its maxmum value.

If b is not constant, it is necessary to compute the shear stress 
at more than one point in order to determine its maximum 
value.
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Sample Problem 5.6

The simply supported wood beam in Fig.(a) is fabricated by gluing 
together three 160-mm by 80-mm plans as shown. Calculate the 
maximum shear stress in (1) the glue; and (2) the wood. 



Solution

From the shear force diagram in Fig. (b), the maximum shear force 
in the beam is Vmax = 24 kN, occurring at the supports. The moment 
of inertia of the cross-sectional area of the beam about the neutral 
axis is 
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( ) 4646
33
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12
240160

12
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( )( ) 336 10024.110024.18080160`` myAQ −×=×=×==

The shear stress is the glue corresponds to 
the horizontal shear stress. Its maximum 
value can be computed from Eq. (5.8): 
τmax = Vmax Q/(Ib), where Q is the first 
moment of the area A’ shown in Fig.(c); 
that is,



Therefore, the shear stress in the glue, which occurs over either 
support, is 
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Part 2

Because the cross section is 
rectangular, the maximum shear 
stress in the wood can be calculated 
from Eq. (5.9):



The same result can be obtained 
from Eq. (5.8), where now A’ is 
the area above the neutral axis, 
as indicated in Fig. (d). The first 
moment of this area about the 
neutral axis is 
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Equation (5.8)this becomes 

which agrees with the previous result.
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Sample Problem 5.7

The W12×40 section in Fig.(a) is used as a beam. If the vertical 
shear acting at a certain section of the beam is 16 kips, determine 
the following at that section: (1) the minimum shear stress in the 
web;(2) the maximum shear stress in the web; and (3)the percentage
of the shear force that is carried by the web. 



Solution

The W12×40 section is shown in Fig.(b), where the dimensions 
were obtained from the tables in Appendix B (P521). The drawing 
approximates the web and the flanges by rectangles, thereby 
ignoring the small fillets and rounded corners present in the actual 
section. The tables also list the moment of inertia of the section 
about the neutral axis as I = 310 in.4.

Part 1
The minimum shear stress in the web 
occurs at the junction with the flange, 
where Q/b is smallest (note that b = 0.295 
in. is constant within the web). Q is the 
first moment of the area A’1 shown in 
Fig.(b) about the neutral axis:
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The minimum shear stress in thus becomes

Answer
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Part 2
The maximum shear stress is located at the neutral axis, where 
Q/b is largest. Hence, Q is the first moment of the area above (or 
below) the neutral axis.



The moment of A’1 was calculated in part 1. The moment of A’2
about the neutral axis is where 
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The maximum shear stress in the web becomes

Answer
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Vweb = (cross section area of web ) × ( area of shear diagram)

The shear stress distribution is parabolic. Recalling that the area 
of a parabola is (2/3) (base × height).

( ) ( ) lbVweb 1491041204890
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Part 3

The distribution of the shear stress in the web is shown in Fig.(c). 
The shear force carried by the web is 



Therefore the percentage of the shear force carried by the web is 

Answer. 

The result confirms that the flanges are ineffective in resisting the 
vertical shear

It was mentioned in Art. 5.5 that we can use τmax = V/Aweb as a 
rough approximation for the maximum shear stress. 

( )( ) psi
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V
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16000
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V
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which differs fromτmax = 4890 psi 
computed in Part 2 by less than 2%. 



Sample Problem 5.8  

The figure shows the cross section of a beam that carries a 
vertical shear force V = 12 kips. The distance from the bottom 
of the section to the neutral axis is d = 8.90 in., and the moment 
of inertia of the cross –sectional area about the neutral axis is I
= 547 in.4. Determine the maximum shear stress on this cross 
section.



Solution 

The maximum shear stress may occur of the neutral axis (where 
Q is largest) or at level a-a in the lower fin (where the width of 
the cross section is smaller than at the neutral axis). 

Shear Stress at Neutral Axis   Take Q to be the first moment of 
the rectangular area above the neutral axis (the area below the 
neutral axis could also be used).

and the shear stress at the neutral axis is
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Shear Stress at a-a   It is easier to compute Q by using the area 
below the line a-a rather than the area above the line. The 
dimensions of this area are b =1.2 in. and h =7.5 in. Consequently,

and the shear stress becomes 

Shear Stress at Neutral Axis
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The maximum shear stress is the largest of the two value;

τmax =  847 psi  (occurring at a-a)     Answer
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