Sheet: 2

1- Air leaving the impeller with radial velocity $110 \mathrm{~m} / \mathrm{s}$ makes an angle of $25^{\circ} 30^{\prime}$ with the axial direction. The impeller tip speed is $475 \mathrm{~m} / \mathrm{s}$. The compressor efficiency is 0.80 and the mechanical efficiency is 0.96 . Find the slip factor, overall pressure ratio, and power required to drive the compressor. Neglect power input factor and assume $\gamma=1.4, \mathrm{~T}_{01}=298 \mathrm{~K}$, and the mass flow rate is $3 \mathrm{~kg} / \mathrm{s}$.
From the velocity triangle

$$
\begin{aligned}
& \tan \left(\beta_{2}\right)=\frac{U_{2}-C_{\mathrm{w} 2}}{C_{\mathrm{r} 2}} \\
& \tan \left(25.5^{\circ}\right)=\frac{475-C_{\mathrm{w} 2}}{110}
\end{aligned}
$$

Therefore, $C_{\mathrm{w} 2}=422.54 \mathrm{~m} / \mathrm{s}$.
Now, $\sigma=\frac{C_{\mathrm{w} 2}}{U_{2}}=\frac{422.54}{475}=0.89$
The overall pressure ratio of the compressor:

$$
\frac{P_{03}}{P_{01}}=\left[1+\frac{\eta_{\mathrm{c}} \sigma \psi U_{2}^{2}}{C_{\mathrm{p}} T_{01}}\right]^{\gamma /(\gamma-1)}=\left[1+\frac{(0.80)(0.89)\left(475^{2}\right)}{(1005)(298)}\right]^{3.5}=4.5
$$

The theoretical power required to drive the compressor:

$$
P=\left[\frac{m \sigma \psi U_{2}^{2}}{1000}\right] \mathrm{kW}=\left[\frac{(3)(0.89)\left(475^{2}\right)}{1000}\right]=602.42 \mathrm{~kW}
$$

Using mechanical efficiency, the actual power required to drive the compressor is: $P=602.42 / 0.96=627.52 \mathrm{~kW}$.

2- The impeller tip speed of a centrifugal compressor is $370 \mathrm{~m} / \mathrm{s}$, slip factor is 0.90 , and the radial velocity component at the exit is $35 \mathrm{~m} / \mathrm{s}$. If the flow area at the exit is $0.18 \mathrm{~m}^{2}$ and compressor efficiency is 0.88 , determine the mass flow rate of air and the absolute Mach number at the impeller tip. Assume air density $\rho=1.57 \mathrm{~kg} / \mathrm{m}^{3}$ and inlet stagnation temperature is 290 K. Neglect the work input factor. Also, find the overall pressure ratio of the compressor?
Slip factor: $\quad \sigma=\frac{C_{\mathrm{w} 2}}{U_{2}}$
Therefore: $C_{\mathrm{w} 2}=U_{2} \sigma=(0.90)(370)=333 \mathrm{~m} / \mathrm{s}$
The absolute velocity at the impeller exit:

$$
C_{2}=\sqrt{C_{\mathrm{r} 2}^{2}+C_{\omega 2}^{2}}=\sqrt{333^{2}+35^{2}}=334.8 \mathrm{~m} / \mathrm{s}
$$

The mass flow rate of air: $\dot{m}=\rho_{2} A_{2} C_{\mathrm{r} 2}=1.57 * 0.18 * 35=9.89 \mathrm{~kg} / \mathrm{s}$
The temperature equivalent of work done (neglecting ψ):

$$
T_{02}-T_{01}=\frac{\sigma U_{2}^{2}}{C_{\mathrm{p}}}
$$

Therefore, $T_{02}=T_{01}+\frac{\sigma U_{2}^{2}}{\mathrm{C}_{\mathrm{p}}}=290+\frac{(0.90)\left(370^{2}\right)}{1005}=412.6 \mathrm{~K}$
The static temperature at the impeller exit,

$$
T_{2}=T_{02}-\frac{C_{2}^{2}}{2 C_{\mathrm{p}}}=412.6-\frac{334.8^{2}}{(2)(1005)}=356.83 \mathrm{~K}
$$

The Mach number at the impeller tip:

$$
\mathrm{M}_{2}=\frac{C_{2}}{\sqrt{\gamma \mathrm{R} T_{2}}}=\frac{334.8}{\sqrt{(1.4)(287)(356.83)}}=0.884
$$

The overall pressure ratio of the compressor (neglecting ψ):

$$
\frac{P_{03}}{P_{01}}=\left[1+\frac{\eta_{\mathrm{c}} \sigma \psi U_{2}^{2}}{C_{\mathrm{p}} T_{01}}\right]^{3.5}=\left[1+\frac{(0.88)(0.9)\left(370^{2}\right)}{(1005)(290)}\right]^{3.5}=3.0
$$

3- A centrifugal compressor is running at $16,000 \mathrm{rpm}$. The stagnation pressure ratio between the impeller inlet and outlet is 4.2. Air enters the compressor at stagnation temperature of $20^{\circ} \mathrm{C}$ and 1 bar . If the impeller has radial blades at the exit such that the radial velocity at the exit is $136 \mathrm{~m} / \mathrm{s}$ and the isentropic efficiency of the compressor is 0.82 . Draw the velocity triangle at the exit of the impeller and calculate slip. Assume axial entrance and rotor diameter at the outlet is 58 cm .

4- Determine the adiabatic efficiency, temperature of the air at the exit, and the power input of a centrifugal compressor from the following given data:

$$
\text { Impeller tip diameter }=1 \mathrm{~m}
$$

Speed $=5945 \mathrm{rpm}$
Mass flow rate of air $=28 \mathrm{~kg} / \mathrm{s}$
Static pressure ratio $p_{3} / p_{1}=2: 2$
Atmospheric pressure $=1$ bar
Atmospheric temperature $=25^{\circ} \mathrm{C}$
Slip factor $=0.90$
Neglect the power input factor.
5- A centrifugal compressor operates with no prewhirl is run with a rotor tip speed of $457 \mathrm{~m} / \mathrm{s}$. If $\mathrm{C}_{\mathrm{w} 2}$ is 95% of U_{2} and $\eta_{\mathrm{c}}=0.88$, calculate the following for operation in standard sea level air: (1) pressure ratio, (2) work input per kg of air, and (3) the power required for a flow of $29 \mathrm{k} / \mathrm{s}$.

6- A centrifugal compressor is running at $10,000 \mathrm{rpm}$ and air enters in the axial direction. The inlet stagnation temperature of air is 290 K and at the exit from the impeller tip the stagnation temperature is 440 K . The isentropic efficiency of the compressor is 0.85 , work input factor $\psi=1.04$, and the slip factor $\sigma=0.88$. Calculate the impeller tip diameter, overall pressure ratio, and power required to drive the compressor per unit mass flow rate of air.

7- Air enters axially in a centrifugal compressor at a stagnation temperature of $20^{\circ} \mathrm{C}$ and is compressed from 1 to 4.5 bars. The impeller has 19 radial vanes and rotates at $17,000 \mathrm{rpm}$. Isentropic efficiency of the compressor is 0.84 and the work input factor is 1.04 . Determine the overall diameter of the impeller and the power required to drive the compressor when the mass flow is $2.5 \mathrm{~kg} / \mathrm{s}$.

8- In an axial flow compressor air enters the compressor at stagnation pressure and temperature of 1 bar and 292 K , respectively. The pressure ratio of the compressor is 9.5 . If isentropic efficiency of the compressor is 0.85 , find the work of compression and the final temperature at the outlet. Assume $\gamma=1.4$, and $\mathrm{C}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.

9- In one stage of an axial flow compressor, the pressure ratio is to be 1.22 and the air inlet stagnation temperature is 288 K . If the stagnation temperature rise of the stages is 21 K , the rotor tip speed is $200 \mathrm{~m} / \mathrm{s}$, and the rotor rotates at 4500 rpm , calculate the stage efficiency and diameter of the rotor.
The stage pressure ratio is given by:

$$
R_{\mathrm{s}}=\left[1+\frac{\eta_{\mathrm{s}} \Delta T_{0 \mathrm{~s}}}{T_{01}}\right]^{\frac{\gamma}{\gamma-1}}
$$

or

$$
1.22=\left[1+\frac{\eta_{\mathrm{s}}(21)}{288}\right]^{3.5}
$$

that is,

$$
\eta_{\mathrm{s}}=0.8026 \text { or } 80.26 \%
$$

The rotor speed is given by:

$$
U=\frac{\pi D N}{60}, \quad \text { or } \quad D=\frac{(60)(200)}{\pi(4500)}=0.85 \mathrm{~m}
$$

10- An axial flow compressor has a tip diameter of 0.95 m and a hub diameter of 0.85 m . The absolute velocity of air makes an angle of 288 measured from the axial direction and relative velocity angle is 568 . The absolute velocity outlet angle is 568 and the relative velocity outlet angle is 288 . The rotor rotates at 5000 rpm and the density of air is $1.2 \mathrm{~kg} / \mathrm{m} 3$. Determine:

1. The axial velocity. 2 . The mass flow rate. 3 . The power required. 4. The flow angles at the hub. 5. The degree of reaction at the hub.
