
CHAPTER

Hydraulic Turbines 9
Hear ye not the hum of mighty workings?

John Keats, Sonnet No. 14
The power of water has changed more in this world than emperors or kings.

Leonardo da Vinci

9.1 INTRODUCTION
To put this chapter into perspective some idea of the scale of hydropower development in the world
might be useful before delving into the intricacies of hydraulic turbines. A very detailed and author-
itative account of virtually every aspect of hydropower is given by Raabe (1985) and this brief intro-
duction serves merely to illustrate a few aspects of a very extensive subject.

Hydropower is the longest established source for the generation of electric power, which, starting in
1880 as a small dc generating plant in Wisconsin, United States, developed into an industrial size plant
following the demonstration of the economic transmission of high voltage ac at the Frankfurt Exhibi-
tion in 1891. Hydropower was expected to have a worldwide yearly growth rate of about 5% (i.e., dou-
bling in size every 15 years) but this rate has now proved to be too optimistic. In 1980 the worldwide
installed generating capacity was 460 GW according to the United Nations (1981) but in 2007 the
figure was just exceeding 700 GW. This works out at roughly 1.6% annual yearly growth. The smaller
growth rate must, primarily, be due to the high costs involved in the civil engineering work, the cost of
the power and related electrical plant, and to some extent the human cost due to massive population
displacements with necessary new building.

According to the Environmental Resources Group Ltd., in 2007 hydropower constituted about 21%
of the world’s electrical generating capacity. The theoretical potential of hydropower is believed to be
2800 GW. The main areas with potential for growth are China, Latin America, and Africa.

Table 9.1 is an extract of data quoted by Raabe (1985) of the distribution of harnessed and harness-
able potential of some of the countries with the biggest usable potential of hydropower. From this list it
is seen that the People’s Republic of China (PRC), the country with the largest harnessable potential
in the world had, in 1974, harnessed only 4.22% of this. However, the Three Gorges Dam project on
the Yangtse River, is now the biggest hydropower plant in the world. It contains 32 Francis turbines
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each capable of generating 700 MW, and in 2011, when all of the plant is fully operational, the total
generating capacity will be 22,500 MW.

Tidal Power
This relatively new and very promising technology, in which tidal stream generators are used to gen-
erate power, is still under active development. Very large amounts of energy can be obtained by this
means and, unlike wind power and solar power, it is available at known times each day. The most effi-
cient type of generator is still to be determined. The world’s first commercial tidal stream generator,
SeaGen, was installed in 2008 at Strangford Lough, Northern Ireland. The prototype version comprises
two 600 kW axial-flow turbines, 16 m in diameter. Further details on this tidal turbine are given
towards the end of this chapter.

Wave Power
Several energy conversion systems have now been developed for obtaining electrical power from
sea waves. One notable example is theWells turbine, which uses an oscillating water column generated
by the waves to drive this special type of axial-flow turbine. Several of these turbines have been
installed (in Scotland and India) and details of their rather special fluid mechanical design are given
in this chapter.

Features of Hydropower Plants
The initial cost of hydropower plants may be much higher than those of thermal power plants. How-
ever, the present value of total costs (which includes those of fuel) is, in general, lower in hydropower
plants. Raabe (1985) listed the various advantages and disadvantages of hydropower plants and a brief
summary of these is given in Table 9.2.

Table 9.1 Distribution of Harnessed and Harnessable Potential of Hydroelectric Power

Country Usable Potential, TWh
Amount of Potential
Used, TWh

Percentage of Usable
Potential

1 China (PRC) 1320 55.6 4.22

2 Former USSR 1095 180 16.45

3 USA 701.5 277.7 39.6

4 Zaire 660 4.3 0.65

5 Canada 535.2 251 46.9

6 Brazil 519.3 126.9 24.45

7 Malaysia 320 1.25 0.39

8 Columbia 300 13.8 4.6

9 India 280 46.87 16.7

Sum 1–9 5731 907.4 15.83

Other countries 4071 843 20.7

Total 9802.4 1750.5 17.8
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9.2 HYDRAULIC TURBINES
Early History of Hydraulic Turbines
The hydraulic turbine has a long period of development, its oldest and simplest form being
the waterwheel, first used in ancient Greece and subsequently adopted throughout medieval Europe
for the grinding of grain, etc. A French engineer, Benoit Fourneyron, developed the first commercially
successful hydraulic turbine (circa 1830). Later Fourneyron built turbines for industrial purposes that
achieved a speed of 2300 rev/min, developing about 50 kW at an efficiency of over 80%.

The American engineer James B. Francis designed the first radial-inflow hydraulic turbine that
became widely used, gave excellent results, and was highly regarded. In its original form it was used
for heads of between 10 and 100 m. A simplified form of this turbine is shown in Figure 1.1(d) in
Chapter 1. It will be observed that the flow path followed is essentially from a radial direction to an
axial direction.

The Pelton wheel turbine, named after its American inventor, Lester A. Pelton, was brought into use
in the second half of the nineteenth century. This is an impulse turbine in which water is piped at high
pressure to a nozzle where it expands completely to atmospheric pressure. The emerging jet impacts onto
the blades (or buckets) of the turbine, which produce the required torque and power output. A simplified
diagram of a Pelton wheel turbine is shown in Figure 1.1(f). The head of water used originally was
between about 90 and 900 m (modern versions operate up to heads of nearly 2000 m).

The increasing need for more power during the early years of the twentieth century also led to
the invention of a turbine suitable for small heads of water, i.e., 3 to 9 m, in river locations where a
dam could be built. In 1913 Viktor Kaplan revealed his idea of the propeller (or Kaplan) turbine, see
Figure 1.1(e), which acts like a ship’s propeller but in reverse. At a later date Kaplan improved his
turbine by means of swiveling blades, which improved the efficiency of the turbine appropriate to
the available flow rate and head.

Flow Regimes for Maximum Efficiency
The efficiency of a hydraulic turbine can be defined as the work developed by the rotor in unit time
divided by the difference in hydraulic energy between inlet and outlet of the turbine in unit time. The

Table 9.2 Features of Hydroelectric Power Plants

Advantages Disadvantages

Technology is relatively simple and proven. High
efficiency. Long useful life. No thermal phenomena
apart from those in bearings and generator.

Number of favourable sites limited and available only
in some countries. Problems with cavitation and
water hammer.

Small operating, maintenance, and replacement
costs.

High initial cost especially for low head plants
compared with thermal power plants.

No air pollution. No thermal pollution of water. Inundation of the reservoirs and displacement of
the population. Loss of arable land. Facilitates
sedimentation upstream and erosion downstream
of a barrage.
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efficiencies of the three principal types of hydraulic turbine just mentioned are shown in Figure 9.1 as
functions of the power specific speed, Ωsp. From eqn. (2.15b), this is

Ωsp ¼ Ω
ffiffiffiffiffiffiffiffi
P=ρ

p
ðgHEÞ

5
4

, ð9:1Þ

where P is the power delivered by the shaft, ρ is the density of water, HE is the effective head at turbine
entry, and Ω is the rotational speed in radians per second. It is remarkable that the efficiency of the
multi-stage Pelton turbine has now reached 92.5% at Ωsp @ 0.2 and that the Francis turbine can achieve
an efficiency of 95 to 96% at an Ωsp @ 1.0 to 2.0.

The Ωsp regimes of these turbine types are of considerable importance to the designer as they indi-
cate the most suitable choice of machine for an application. In general, low specific speed machines
correspond to low volume flow rates and high heads, whereas high specific speed machines correspond
to high volume flow rates and low heads. Table 9.3 summarises the normal operating ranges for the
specific speed, the effective head, the maximum power and best efficiency for each type of turbine.
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FIGURE 9.1

Typical Design Point Efficiencies of Pelton, Francis, and Kaplan Turbines

Table 9.3 Operating Ranges of Hydraulic Turbines

Pelton Turbine Francis Turbine Kaplan Turbine

Specific speed (rad) 0.05–0.4 0.4–2.2 1.8–5.0

Head (m) 100–1770 20–900 6–70

Maximum power (MW) 500 800 300

Optimum efficiency (%) 90 95 94

Regulation method Needle valve and
deflector plate

Stagger angle of
guide vanes

Stagger angle of rotor
blades

Note: Values shown in the table are only a rough guide and are subject to change.

306 CHAPTER 9 Hydraulic Turbines



According to the experience of Sulzer Hydro Ltd., of Zurich, the application ranges of the various
types of turbines and turbine pumps (including some not mentioned here) are plotted in Figure 9.2 on a
ln Q versus ln HE diagram and reflect the present state of the art of hydraulic turbomachinery design.
Also in Figure 9.2 lines of constant power output are conveniently shown and have been calculated as
the product ηρgQHE where the efficiency η is given the value of 0.8 throughout the chart.

Capacity of Large Francis Turbines
The size and capacity of some of the recently built Francis turbines is a source of wonder, they seem so
enormous! The size and weight of the runners cause special problems getting them to the site, espe-
cially when rivers have to be crossed and the bridges are inadequate.

The largest installation in North America (circa 1998) is at La Grande on James Bay in eastern
Canada where 22 units each rated at 333 MW have a total capacity of 7326 MW. A close competitor
with the Three Gorges project is the Itaipu hydroelectric plant on the Paraná river (between Brazil and
Paraguay), which has a capacity of 12,600 MW in full operation using 18 Francis turbines each sized at
700 MW.
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FIGURE 9.2

Application Ranges for Various Types of Hydraulic Turbomachines, as a plot of Q versus H with Lines of Constant
Power Determined Assuming η0 = 0.8 (Courtesy Sulzer Hydro Ltd., Zurich)
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The efficiency of large Francis turbines has gradually risen over the years and now is about 95%.
There seems to be little prospect of much further improvement in efficiency as computable values of
losses due to skin friction, tip leakage, and exit kinetic energy from the diffuser are reckoned to account
for the remaining 5%. Raabe (1985) has given much attention to the statistics of the world’s biggest
turbines. It would appear at the present time that the largest hydroturbines in the world are the three
vertical shaft Francis turbines installed at Grand Coulee III on the Columbia River, Washington, United
States. Each of these leviathans has been uprated to 800 MW, with the delivery (or effective) head,
HE ¼ 87 m, N ¼ 85.7 rev/min, the runner having a diameter of D ¼ 9.26 m and weighing 450 ton.
Using this data in eqn. (9.1) it is easy to calculate that the power specific speed Ωsp ¼ 1.74 rad.

9.3 THE PELTON TURBINE
This is the only hydraulic turbine of the impulse type now in common use. It is an efficient machine
and it is particularly suited to high head applications. The rotor consists of a circular disc with a number
of blades (usually called buckets) spaced around the periphery. One or more nozzles are mounted in
such a way that each nozzle directs its jet along a tangent to the circle through the centres of the
buckets. A “splitter” or ridge splits the oncoming jet into two equal streams so that, after flowing
round the inner surface of the bucket, the two streams depart from the bucket in a direction nearly
opposite to that of the incoming jet.

Figure 9.3 shows the runner of a Pelton turbine and Figure 9.4 shows a six-jet vertical axis Pelton
turbine. Considering one jet impinging on a bucket, the appropriate velocity diagram is shown in
Figure 9.5. The jet velocity at entry is c1 and the blade speed is U so that the relative velocity at
entry is w1 ¼ c1 � U. At exit from the bucket one half of the jet stream flows as shown in the velocity
diagram, leaving with a relative velocity w2 and at an angle β2 to the original direction of flow. From
the velocity diagram the much smaller absolute exit velocity c2 can be determined.

From Euler’s turbine equation, eqn. (1.18c), the specific work done by the water is

ΔW ¼ U1cθ1 �U2cθ2.

For the Pelton turbine, U1 ¼ U2 ¼ U, cθ1 ¼ c1 so we get

ΔW ¼ U U þ w1 �ðU þ w2 cos β2Þ� ¼ Uðw1 �w2 cos β2Þ,½

in which the value of cθ2 < 0, as defined in Figure 9.5, i.e., cθ2 ¼ U þ w2 cos β2.
The effect of friction on the fluid flowing inside the bucket will cause the relative velocity at outlet

to be less than the value at inlet. Writing w2 ¼ kw1, where k < 1,

ΔW ¼ Uw1ð1� k cos β2Þ ¼ Uðc1 �UÞð1� k cos β2Þ. ð9:2Þ

An efficiency ηR for the runner can be defined as the specific work done ΔW divided by the incoming
kinetic energy, i.e.,

ηR ¼ ΔW
1
2
c21

� �
¼ 2Uðc1 �UÞð1� k cos β2Þ=c21.

�
ð9:3Þ
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Therefore,

ηR ¼ 2νð1� νÞð1� k cos β2Þ, ð9:4Þ
where the blade speed to jet speed ratio, v ¼ U/c1.

To find the optimum efficiency, differentiate eqn. (9.4) with respect to the blade speed ratio, i.e.,

dηR
dν

¼ 2
d
dν

ðν� ν2Þð1� k cos β2Þ ¼ 2ð1� 2νÞð1� k cos β2Þ ¼ 0.

Therefore, the maximum efficiency of the runner occurs when ν ¼ 0.5, i.e., U ¼ c1/2. Hence,

ηR max ¼ ð1� k cos β2Þ. ð9:5Þ

FIGURE 9.3

Pelton Turbine Runner (Courtesy Sulzer Hydro Ltd., Zurich)
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FIGURE 9.4

Six-Jet Vertical Shaft Pelton Turbine, Horizontal Section; Power Rating 174.4 MW, Runner Diameter 4.1 m,
Speed 300 rev/min, Head 587 m (Courtesy Sulzer Hydro Ltd., Zurich)
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FIGURE 9.5

The Pelton Wheel Showing the Jet Impinging onto a Bucket and the Relative and Absolute Velocities of the Flow
(Only One Half of the Emergent Velocity Diagram Is Shown)
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Figure 9.6 shows the theoretical variation of the runner efficiency with blade speed ratio for assumed
values of k ¼ 0.8, 0.9, and 1.0 with β2 ¼ 165°. In practice the value of k is usually found to be between
0.8 and 0.9.

A Simple Hydroelectric Scheme
The layout of a Pelton turbine hydroelectric scheme is shown in Figure 9.7. The water is delivered from
a constant level reservoir at an elevation zR (above sea level) and flows via a pressure tunnel to the
penstock head, down the penstock to the turbine nozzles emerging onto the buckets as a high speed
jet. To reduce the deleterious effects of large pressure surges, a surge tank is connected to the flow
close to the penstock head, which acts so as to damp out transients. The elevation of the nozzles is
zN and the gross head, HG ¼ zR� zN.

Controlling the Speed of the Pelton Turbine
The Pelton turbine is usually directly coupled to an electrical generator that must run at synchronous
speed. With large size hydroelectric schemes supplying electricity to a national grid it is essential for
both the voltage and the frequency to closely match the grid values. To ensure that the turbine runs at
constant speed despite any load changes that may occur, the rate of flow Q is changed. A spear (or
needle) valve, Figure 9.8(a), whose position is controlled by means of a servomechanism, is moved
axially within the nozzle to alter the diameter of the jet. This works well for very gradual changes
in load. However, when a sudden loss in load occurs a more rapid response is needed. This is accom-
plished by temporarily deflecting the jet with a deflector plate so that some of the water does not reach
the buckets, Figure 9.8(b). This acts to prevent over-speeding and allows time for the slower acting
spear valve to move to a new position.

0.9
k5 1.0

0.8

1.0

0
0.2 0.4 0.6 0.8 1.0

Blade speed–jet speed ratio, n

E
ffi

ci
en

cy
 o

f r
un

ne
r

FIGURE 9.6

Theoretical Variation of Runner Efficiency for a Pelton Wheel with a Blade Speed–Jet Speed Ratio for several
Values of Friction Factor k
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FIGURE 9.7

Pelton Turbine Hydroelectric Scheme
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FIGURE 9.8

Methods of Regulating the Speed of a Pelton Turbine: (a) with a Spear (or Needle) Valve; (b) with a Deflector
Plate
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It is vital to ensure that the spear valve does move slowly as a sudden reduction in the rate of flow
could result in serious damage to the system from pressure surges (called water hammer). If the spear
valve did close quickly, all the kinetic energy of the water in the penstock would be absorbed by the
elasticity of the supply pipeline (penstock) and the water, creating very large stresses, which would
reach their greatest intensity at the turbine inlet where the pipeline is already heavily stressed. The
surge chamber, shown in Figure 9.7, has the function of absorbing and dissipating some of the pressure
and energy fluctuations created by too rapid a closure of the needle valve.

Sizing the Penstock
It is shown in elementary textbooks on fluid mechanics, e.g., Shames (1992) and Douglas, Gasiorek,
and Swaffield (1995), that the loss in head with incompressible, steady, turbulent flow in pipes of
circular cross-section is given by Darcy’s equation:

Hf ¼ 2 f lV2

gd
, ð9:6Þ

where f is the friction factor, l is the length of the pipe, d is the pipe diameter, and V is the mass average
velocity of the flow in the pipe. It is assumed, of course, that the pipe is running full. The value of the
friction factor has been determined for various conditions of flow and pipe surface roughness and the
results are usually presented in what is called a Moody diagram. This diagram gives values of f as a
function of pipe Reynolds number for varying levels of relative roughness of the pipe wall.

The penstock (the pipeline bringing the water to the turbine) is long and of large diameter and this
can add significantly to the total cost of a hydroelectric power scheme. Using Darcy’s equation it is
easy to calculate a suitable pipe diameter for such a scheme if the friction factor is known and an esti-
mate can be made of the allowable head loss. Logically, this head loss would be determined on the
basis of the cost of materials etc., needed for a large diameter pipe and compared with the value of
the useful energy lost from having too small a pipe. A commonly used compromise for the loss in
head in the supply pipes is to allow Hf � 0.1 HG.

From eqn. (9.6), substituting for the velocity, V ¼ 4Q/(πd2), we get

Hf ¼ 32 fl
π2 g

� �
Q2

d5
. ð9:7Þ

EXAMPLE 9.1
Water is supplied to a turbine at the rate Q ¼ 2.272 m3/s by a single penstock 300 m long. The allowable head loss
due to friction in the pipe amounts to 20 m. Determine the diameter of the pipe if the friction factor f ¼ 0.01.

Solution
Rearranging eqn. (9.7)

d5 ¼ 32 f l

gHf

Q

π

� �2
¼ 32� 0:01� 300

9:81� 20
2:272
π

� �2
¼ 0:2559.

Therefore, d ¼ 0.7614 m.

9.3 The Pelton Turbine 313



Energy Losses in the Pelton Turbine
Having accounted for the energy loss due to friction in the penstock, the energy losses in the rest of the
hydroelectric scheme must now be considered. The effective head, HE (or delivered head), at entry to
the turbine is the gross head minus the friction head loss, Hf, i.e.,

HE ¼ HG �Hf ¼ zR � zN �Hf

and the spouting (or ideal) velocity, co, is

co ¼
ffiffiffiffiffiffiffiffiffiffiffi
2gHE

p
.

The pipeline friction loss Hf is regarded as an external loss and is not usually included in the losses
attributed to the turbine itself. The performance and efficiency of the turbine are, in effect, measured
against the total head, HE, as shown in the following.

The main energy losses of the turbine occur in

(i) the nozzles due to fluid friction;
(ii) converting the kinetic energy of the jet into mechanical energy of the runner;
(iii) external effects (bearing friction and windage).

Each of these energy losses are now considered in turn.
For item (i) let the loss in head in the nozzles be ΔHN. Thus, the available head is

HE �ΔHN ¼ c21=ð2gÞ, ð9:8Þ
where c1 is the actual velocity of the jet at nozzle exit. The nozzle efficiency is defined by

ηN ¼ energy at nozzle exit
energy at nozzle inlet

¼ c21
2 gHE

. ð9:9aÞ

This efficiency is usually very close to 100% as the flow is accelerating through the nozzle. An often-
used alternative to ηN is the nozzle velocity coefficient KN defined by

KN ¼ actual velocity at nozzle exit
spouting velocity

¼ c1
c0

,

i.e.,

ηN ¼ K2
N ¼ c21

c20
. ð9:9bÞ

For item (ii) the loss in energy is already described in eqn. (9.2) and the runner efficiency ηR by
eqns. (9.3) and (9.4). The turbine hydraulic efficiency ηh is defined as the specific work done by
the rotor, ΔW, divided by the specific energy available at entry to the nozzle, gHE, i.e.,

ηh ¼
ΔW
gHE

¼ ΔW
1
2 c

2
1

 !
1
2 c

2
1

gHE

� �
¼ ηRηN , ð9:10Þ

after using eqn. (9.9a).
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For item (iii) the external losses are responsible for the energy deficit between the runner and the
shaft. A good estimate of these losses can be made using the following simple flow model where the
specific energy loss is assumed to be proportional to the square of the blade speed, i.e.,

external loss=unit mass flow ¼ KU2,

where K is a dimensionless constant of proportionality. Thus, the shaft work done/unit mass flow is

ΔW �KU2.

Therefore, the overall efficiency of the turbine, ηo, including these external losses is

ηo ¼ ðΔW �KU2Þ=ðgHeÞ,
i.e., the shaft work delivered by the turbine/specific energy available at nozzle entry, which

¼ ηRηN � 2K
U

c1

� �2 c21
2 gHE

� �
.

Using the definitions of the blade speed–jet speed ratio, ν ¼ U/c1, and the nozzle efficiency,
ηN ¼ c21=c

2
2,

η0 ¼ ηNðηR � 2Kν2Þ ¼ ηmηRηN , ð9:11Þ
where the mechanical efficiency, ηm ¼ 1� external losses/gHE, i.e.,

ηm ¼ 1� 2Kν2=ηR. ð9:12Þ
The variation of the overall efficiency as given by eqn. (9.11) is shown in Figure 9.9 as a function

of ν for several values of the windage coefficient K. It will be noticed that peak efficiency reduces as
the value of K is increased and that it occurs at lower values of ν than the optimum for the runner. This
evaluation of the theoretical performance of a Pelton turbine gives a possible reason for the often puz-
zling result given when experiments are evaluated and that always yield a peak efficiency for values of
ν < 0.5.
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FIGURE 9.9

Variation of Overall Efficiency of a Pelton Turbine with Speed Ratio for Several Values of Windage Coefficient, K
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By differentiating eqn. (9.11) it can be shown that the optimum value of ν occurs when

νopt ¼ A

2ðAþ KÞ .

where A ¼ 1� k cos β2.

Exercise
Let k ¼ 0.9, β2 ¼ 165°, and K ¼ 0.1. Hence, A ¼ 1.869 and ν ¼ 0.475.

Typical performance of a Pelton turbine under conditions of constant head and speed is shown in
Figure 9.10 in the form of the variation of overall efficiency against load ratio. As a result of a change
in the load the output of the turbine must then be regulated by a change in the setting of the needle
valve to keep the turbine speed constant. The observed almost constant value of the efficiency over
most of the load range is the result of the hydraulic losses reducing in proportion to the power output.
However, as the load ratio is reduced to even lower values, the windage and bearing friction losses,
which have not diminished, assume a relatively greater importance and the overall efficiency rapidly
diminishes towards zero.

EXAMPLE 9.2
A Pelton turbine is driven by two jets, generating 4.0 MW at 375 rev/min. The effective head at the nozzles is 200 m
of water and the nozzle velocity coefficient, KN ¼ 0.98. The axes of the jets are tangent to a circle 1.5 m in diameter.
The relative velocity of the flow across the buckets is decreased by 15% and the water is deflected through an angle
of 165°.

Neglecting bearing and windage losses, determine

(i) the runner efficiency;
(ii) the diameter of each jet;
(iii) the power specific speed.
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0,

 %
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FIGURE 9.10

Pelton Turbine Overall Efficiency Variation with Load Under Constant Head and Constant Speed Conditions
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Solution
(i) The blade speed is

U ¼ Ωr ¼ ð375� π=30Þ� 1:5=2 ¼ 39:27� 1:5=2 ¼ 29:45 m=s.

The jet speed is

c1 ¼ KN

ffiffiffiffiffiffiffiffiffiffiffi
2gHE

p
¼ 0:98�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 9:81� 200

p
¼ 61:39 m=s.

Therefore, ν ¼ U/c1 ¼ 0.4798.
The efficiency of the runner is obtained from eqn. (9.4):

ηR ¼ 2� 0:4798�ð1� 0:4798Þð1� 0:85� cos 165�Þ ¼ 0:9090.

(ii) The “theoretical” power is Pth ¼ P/ηR ¼ 4.0/0.909 ¼ 4.40 MW, where Pth ¼ ρgQHE. Therefore,

Q ¼ Pth=ð ρgHEÞ ¼ 4:4� 106=ð9810� 200Þ ¼ 2:243 m3=s.

Each jet must have a flow area of

Aj ¼ Q

2c1
¼ 2:243=ð2� 61:39Þ ¼ 0:01827 m2.

Therefore, dj ¼ 0.5125 m.
(iii) Substituting into eqn. (9.1), the power specific speed is

Ωsp ¼ 39:27� 4:0� 106

103

� �1
2

ð9:81� 200Þ54 ¼ 0:190 rad.
.

9.4 REACTION TURBINES
The primary features of the reaction turbine are

(i) only part of the overall pressure drop has occurred up to turbine entry, the remaining pressure
drop takes place in the turbine itself;

(ii) the flow completely fills all of the passages in the runner, unlike the Pelton turbine where, for each
jet, only one or two of the buckets at a time are in contact with the water;

(iii) pivotable guide vanes are used to control and direct the flow;
(iv) a draft tube is normally added on to the turbine exit; this is considered as an integral part of the

turbine.

The pressure of the water gradually decreases as it flows through the runner and the reaction from this
pressure change earns this type of turbine its appellation.

9.5 THE FRANCIS TURBINE
The majority of Francis turbines are arranged so that the axis is vertical (some smaller machines can
have horizontal axes). Figure 9.11 illustrates a section through a vertical shaft Francis turbine with a
runner diameter of 5 m, a head of 110 m, and a power rating of nearly 200 MW. Water enters via a
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spiral casing called a volute or scroll that surrounds the runner. The area of cross-section of the volute
decreases along the flow path in such a way that the flow velocity remains constant. From the volute
the flow enters a ring of stationary guide vanes, which direct it onto the runner at the most appropriate
angle.

In flowing through the runner the angular momentum of the water is reduced and work is supplied
to the turbine shaft. At the design condition the absolute flow leaves the runner axially (although a
small amount of swirl may be countenanced) into the draft tube and, finally, the flow enters the tail-
race. It is essential that the exit of the draft tube is submerged below the level of the water in the tail-
race in order that the turbine remains full of water. The draft tube also acts as a diffuser; by careful
design it can ensure maximum recovery of energy through the turbine by significantly reducing the
exit kinetic energy.

Figure 9.12 shows the runner of a small Francis turbine and Figure 9.13 is a sectional view of the
turbine together with the velocity triangles at inlet to and exit from the runner at mid-blade height. At
inlet to the guide vanes the flow is in the radial/tangential plane, the absolute velocity is c1 and the
absolute flow angle is α1. Thus,

α1 ¼ tan�1ðcθ1=cr1Þ. ð9:13Þ

FIGURE 9.11

Vertical Shaft Francis Turbine: Runner Diameter 5 m, Head 110 m, Power 200 MW (Courtesy Sulzer Hydro Ltd.,
Zurich)
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The flow is turned to angle α2 and velocity c2, the absolute condition of the flow at entry to the runner.
By vector subtraction the relative velocity at entry to the runner is found, i.e., w2 ¼ c2 � U2. The rela-
tive flow angle β2 at inlet to the runner is defined as

β2 ¼ tan�1½ðcθ2 �U2Þ=cr2�. ð9:14Þ

Further inspection of the velocity diagrams in Figure 9.13 reveals that the direction of the velocity vec-
tors approaching both guide vanes and runner blades are tangential to the camber lines at the leading
edge of each row. This is the ideal flow condition for “shockless” low loss entry, although an incidence
of a few degrees may be beneficial to output without a significant extra loss penalty. At vane outlet
some deviation from the blade outlet angle is to be expected (see Chapter 3). For these reasons, in
all problems concerning the direction of flow, it is clear that the angle of the fluid flow is important
and not the vane angle as is often quoted in other texts.

At outlet from the runner the flow plane is simplified as though it were actually in the radial/
tangential plane. This simplification will not affect the subsequent analysis of the flow but it must
be conceded that some component of velocity in the axial direction does exist at runner outlet.

The water leaves the runner with a relative flow angle β3 and a relative flow velocity w3. The abso-
lute velocity at runner exit is found by vector addition, i.e., c3 ¼ w3 þ U3. The relative flow angle, β3,
at runner exit is given by

β3 ¼ tan �1 ½ðcθ3 þ U3Þ=cr3�. ð9:15Þ

FIGURE 9.12

Runner of a Small Francis Turbine (Permission Granted to Copy Under the Terms of the GNU Free Documenta-
tion License)
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In this equation it is assumed that some residual swirl velocity cθ3 is present (cr3 is the radial velocity at
exit from the runner). In most simple analyses of the Francis turbine it is assumed that there is no exit
swirl. Detailed investigations have shown that some extra counter-swirl (i.e., acting so as to increase
Δcθ) at the runner exit does increase the amount of work done by the fluid without a significant reduc-
tion in turbine efficiency.

When a Francis turbine is required to operate at part load, the power output is reduced by swivelling
the guide vanes to restrict the flow, i.e., Q is reduced, while the blade speed is maintained constant.
Figure 9.14 compares the velocity triangles at full load and at part load from which it will be seen
that the relative flow at runner entry is at a high incidence and at runner exit the absolute flow has
a large component of swirl. Both of these flow conditions give rise to high head losses. Figure 9.15
shows the variation of hydraulic efficiency for several types of turbine, including the Francis turbine,
over the full load range at constant speed and constant head.

It is of interest to note the effect that swirling flow has on the performance of the following diffuser.
The results of an extensive experimental investigation made by McDonald, Fox, and van Dewoestine
(1971) showed that swirling inlet flow does not affect the performance of conical diffusers, which are
well designed and give unseparated or only slightly separated flow when the flow through them is
entirely axial. Accordingly, part load operation of the turbine is unlikely to give adverse diffuser
performance.
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FIGURE 9.13

Sectional Sketch of Blading for a Francis Turbine Showing Velocity Diagrams at Runner Inlet and Exit
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Basic Equations
Euler’s turbine equation, eqn. (1.18c), in the present notation, is written as

ΔW ¼ U2cθ2 �U3cθ3. ð9:16aÞ
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FIGURE 9.14

Comparison of Velocity Triangles for a Francis Turbine at Full Load and at Part Load Operation
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FIGURE 9.15

Variation of Hydraulic Efficiency for Various Types of Turbine over a Range of Loading, at Constant Speed and
Constant Head
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If the flow at runner exit is without swirl then the equation reduces to

ΔW ¼ U2cθ2. ð9:16bÞ
The effective head for all reaction turbines, HE, is the total head available at the turbine inlet relative to
the surface of the tailrace. At entry to the runner the energy available is equal to the sum of the kinetic,
potential and pressure energies:

gðHE �ΔHNÞ¼ p2 � pa
ρ

þ 1
2
c22 þ gz2, ð9:17Þ

where ΔHN is the loss of head due to friction in the volute and guide vanes and p2 is the absolute static
pressure at inlet to the runner.

At runner outlet the energy in the water is further reduced by the amount of specific work ΔW and
by friction work in the runner, gΔHR and this remaining energy equals the sum of the pressure potential
and kinetic energies:

gðHE �ΔHN �ΔHRÞ�ΔW ¼ 1
2
c23 þ p3=ρ� pa=ρþ gz3, ð9:18Þ

where p3 is the absolute static pressure at runner exit.
By differencing eqns. (9.17) and (9.18), the specific work is obtained:

ΔW ¼ ðp02 � p03Þ=ρ� gΔHR þ gðz2 � z3Þ, ð9:19Þ
where p02 and p03 are the absolute total pressures at runner inlet and exit.

Figure 9.16 shows the draft tube in relation to a vertical-shaft Francis turbine. The most important
dimension in this diagram is the vertical distance (z ¼ z3) between the exit plane of the runner and the

c3

Z

Draft tube

c4

Tailwater

FIGURE 9.16

Location of Draft Tube in Relation to Vertical Shaft Francis Turbine
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free surface of the tailrace. The energy equation between the exit of the runner and the tailrace can now
be written as

p3=ρþ 1
2
c23 þ gz3 � gΔHDT ¼ 1

2
c24 þ pa=ρ, ð9:20Þ

where ΔHDT is the loss in head in the draft tube and c4 is the flow exit velocity.
The hydraulic efficiency is defined by

ηh ¼
ΔW
gHE

¼ U2cθ2 �U3cθ3
gHE

ð9:21aÞ

and, whenever cθ3 ¼ 0,

ηH ¼ U2cθ2
gHE

. ð9:21bÞ

The overall efficiency is given by ηo ¼ ηmηH. For very large turbines (e.g., 500–1000 MW) the
mechanical losses are then relatively small, η→ 100% and effectively ηo � ηH.

For the Francis turbine the ratio of the runner tip speed to the jet velocity, ν ¼ U2/c1, is not as cri-
tical for high efficiency operation as it is for the Pelton turbine and can lie in a fairly wide range, e.g.,
0.6 � ν � 0.95. In most applications the Francis turbine is used to drive a synchronous generator and
the rotational speeds chosen are those appropriate to either 50 or 60 cycles per second. The speed must
then be maintained constant.

It is possible to obtain part load operation of the turbine by varying the angle of the guide vanes.
The guide vanes are pivoted and set to an optimum angle via a gearing mechanism. However, part load
operation normally causes a whirl velocity to be set up in the flow downstream of the runner causing a
reduction in efficiency. The strength of the vortex may be enough to cause a cavitation bubble to form
along the axis of the draft tube. (See Section 9.8, Cavitation.)

EXAMPLE 9.3
In a vertical-shaft Francis turbine the available head at the inlet flange is 150 m of water and the vertical distance
between the runner and the tailrace is 2.0 m. The runner tip speed is 35 m/s, the meridional velocity of the water
through the runner is constant at 10.5 m/s, the flow leaves the runner without whirl and the velocity at exit from the
draft tube is 3.5 m/s.

The hydraulic losses for the turbine are as follows:

ΔHN ¼ 6:0 m, ΔHR ¼ 10 m, ΔHDT ¼ 1:0 m.

Determine

(i) the specific work, ΔW, and the hydraulic efficiency, ηh, of the turbine;
(ii) the absolute velocity, c2, at runner entry;
(iii) the pressure head (relative to the tailrace) at inlet to and exit from the runner;
(iv) the absolute and relative flow angles at runner inlet;
(v) if the flow discharged by the turbine is 20 m3/s and the power specific speed is 0.8 (rad), the speed of rotation

and diameter of the runner.
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Solution
From eqns. (9.18) and (9.20), we can find the specific work,

ΔW ¼ gðHE �ΔHN �ΔHR �ΔHDTÞ� 1
2
c24

¼ 9:81�ð150� 6� 10� 1Þ� 3:52=2 ¼ 1298:6 m2=s2.

The hydraulic efficiency, ηh ¼ ΔW/(gHE) ¼ 0.8825.
As cθ3 ¼ 0, then ΔW ¼ U2cθ2 and cθ2 ¼ ΔW/U2 ¼ 1298.6/35 ¼ 37.1 m/s, thus,

c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2θ2 þ c2m

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
37:12 þ 10:52

p
¼ 38:56 m=s:

From eqn. (9.17) the pressure head at inlet to the runner is

H2 ¼ HE �ΔHN � c22=ð2gÞ ¼ 150� 6� 38:562=ð2� 9:81Þ ¼ 68:22 m:

Again, using eqn. (9.20), the pressure head (relative to the tailrace) at runner exit is

H3 ¼ ðp3 � paÞ=ðρgÞ ¼ ðc24 � c23Þ=ð2gÞ þ ΔHDT � z3 ¼ ð3:52 � 10:52Þ=ð2� 9:81Þ þ 1� 2 ¼ �6:0 m.

Note: The minus sign for H3 indicates that the pressure is below the atmospheric level. This is a matter of con-
siderable importance in the design and operation of hydraulic turbomachinery and is considered in further detail
under the heading Cavitation later in this chapter.

The flow angles at runner inlet are now obtained as follows:

α2¼ tan �1ðcθ2=cr2Þ ¼ tan�1ð37:1=10:5Þ ¼ 74:2�

β2 ¼ tan�1½ðcθ2 �U2Þ=cr2� ¼ tan�1½ð37:1� 35Þ=10:5� ¼ 11:31�.

From the definition of power specific speed, eqn. (9.1), and using P/ρ ¼ QΔW,

Ω ¼ ΩSPðgHEÞ
5
4ffiffiffiffiffiffiffiffiffiffiffi

QΔW
p ¼ 0:8� 9114ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

20� 1298:7
p ¼ 45:24 rad=s:

Thus, the rotational speed N ¼ 432 rev/min and the runner diameter is

D2 ¼ 2U2=Ω ¼ 70=45:24 ¼ 1:547 m.

9.6 THE KAPLAN TURBINE
This type of turbine evolved from the need to generate power from much lower pressure heads than are
normally employed with the Francis turbine. To satisfy large power demands very large volume flow
rates need to be accommodated in the Kaplan turbine, i.e., the product QHE is large. The overall flow
configuration is from radial to axial. Figure 9.17(a) is a part sectional view of a Kaplan turbine in
which the flow enters from a volute into the inlet guide vanes, which impart a degree of swirl to
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