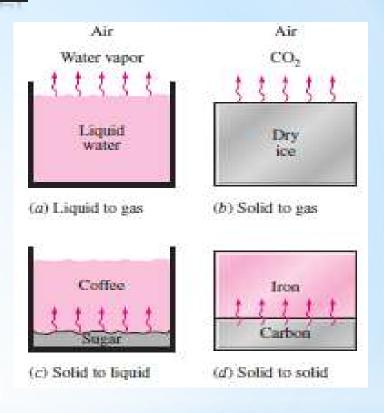
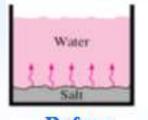


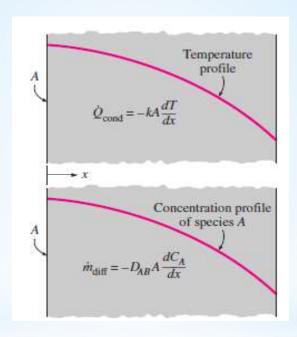
Heat Transfer

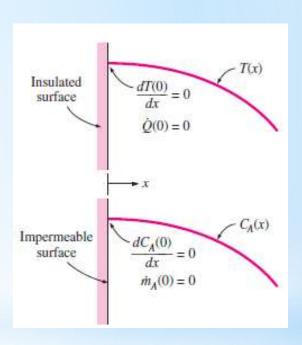



Mass Transfer

Mass transfer occurs whenever there is a gradient in the concentration of a species.

Whenever there is concentration difference in a medium, nature tends to equalize things by forcing a flow from the high to the low concentration region.

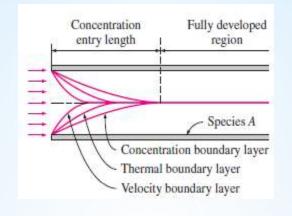


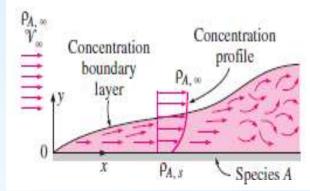

Before After

Mass Transfer Relations

Fick's law: linear relation between the rate of diffusion of chemical species and the concentration gradient of that species.

$$\dot{m}_{\rm diff} = -D_{AB}A \frac{dC_A}{dx}$$

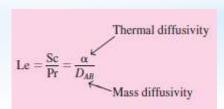

Molecular diffusion

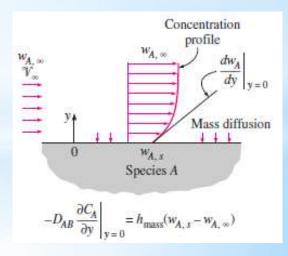

The diffusion of molecules when the whole bulk fluid is not moving but stationary. Diffusion of molecules is due to a concentration gradient.

Convection Mass Transfer

When a fluid flowing outside a solid surface in forced convection motion, rate of convective mass transfer is given by:

$$\dot{m}_{\rm conv} = h_{\rm mass} A_{\rm s} (C_{\rm s} - C_{\infty})$$

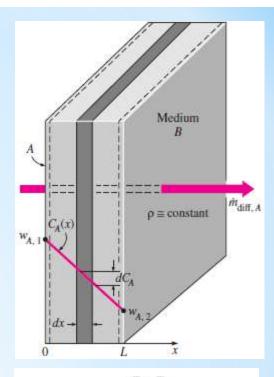

$$\dot{m}_{\mathrm{conv}} = h_{\mathrm{mass}} A(\rho_{A,z} - \rho_{A,\varpi}) = h_{\mathrm{mass}} \rho A(w_{A,z} - w_{A,\infty})$$

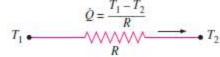

Schmidt number:
$$Sc = \frac{v}{D_{AB}} = \frac{Momentum diffusivity}{Mass diffusivity}$$

$$\frac{\delta_{\text{velocity}}}{\delta_{\text{thermal}}} = Pr^n$$
, $\frac{\delta_{\text{velocity}}}{\delta_{\text{concentration}}} = Sc^n$, and $\frac{\delta_{\text{thermal}}}{\delta_{\text{concentration}}} = Le^n$

Heat transfer: Nu =
$$\frac{h_{\text{conv}} L}{k}$$

Mass transfer: Sh =
$$\frac{h_{\text{mass}} I}{D_{AB}}$$





$$m_{\text{diff, A, wall}} = \frac{w_{A, 1} - w_{A, 2}}{L/\rho D_{AB} A} = \frac{w_{A, 1} - w_{A, 2}}{R_{\text{diff, wall}}}$$

$$R_{\text{diff, wall}} = \frac{L}{\rho D_{AB} A}$$

Convective Heat Transfer	Convective Mass Transfer
1. Forced Convection over a Flat Plate (a) Laminar flow (Re $< 5 \times 10^5$) Nu = 0.664 Re _L ^{0.5} Pr ^{1/3} , Pr > 0.6	$Sh = 0.664 \text{ Re}_L^{0.5} \text{ Sc}^{1/3}, \text{Sc} > 0.5$
(b) Turbulent flow ($5 \times 10^5 < \text{Re} < 10^7$) Nu = 0.037 Re _L ^{0.8} Pr ^{1/3} , Pr > 0.6	$Sh = 0.037 \text{ Rep.8 Sc}^{1/3}, Sc > 0.5$
2. Fully Developed Flow in Smooth Circular Pipes (a) Laminar flow (Re < 2300) Nu = 3.66	Sh = 3.66
(b) Turbulent flow (Re $> 10,000$) Nu = 0.023 Re ^{0.8} Pr ^{0.4} , 0.7 < Pr < 160	Sh = 0.023 Re ^{0.8} Sc ^{0.4} , 0.7 < Sc 160
$ \begin{array}{ll} \textbf{3. Natural Convection over Surfaces} \\ \textbf{(a) Vertical plate} \\ \textbf{Nu} = 0.59 (\text{Gr Pr})^{1/4}, & 10^5 < \text{Gr Pr} < 10^9 \\ \textbf{Nu} = 0.1 (\text{Gr Pr})^{1/3}, & 10^9 < \text{Gr Pr} < 10^{13} \\ \end{array} $	$\begin{array}{ll} {\rm Sh} = 0.59 ({\rm Gr~Sc})^{1/4}, & 10^5 < {\rm Gr~Sc} < 10^9 \\ {\rm Sh} = 0.1 ({\rm Gr~Sc})^{1/3}, & 10^9 < {\rm Gr~Sc} < 10^{13} \end{array}$
(b) Upper surface of a horizontal plate Surface is hot $(T_s > T_w)$ Nu = 0.54(Gr Pr) ^{1/4} , $10^4 < \text{Gr Pr} < 10^7$ Nu = 0.15(Gr Pr) ^{1/3} , $10^7 < \text{Gr Pr} < 10^{11}$	Fluid near the surface is light ($\rho_s < \rho_\infty$) Sh = 0.54(Gr Sc) ^{1/4} , $10^4 < Gr$ Sc $< 10^7$ Sh = 0.15(Gr Sc) ^{1/3} , $10^7 < Gr$ Sc $< 10^{11}$
(c) Lower surface of a horizontal plate Surface is hot $(T_s > T_x)$ Nu = 0.27(Gr Pr) ^{1/4} , $10^5 <$ Gr Pr $< 10^{11}$	Fluid near the surface is light ($\rho_s < \rho_m$) Sh = 0.27(Gr Sc) ^{1/4} , 10 ⁵ < Gr Sc < 10 ¹¹

(a) Heat flow

(b) Current flow

$$\dot{m}_{\text{diff, A}} = \frac{w_{A, 1} - w_{A, 2}}{R_{\text{mass}}}$$
 $w_{A, 1} \leftarrow w_{A, 2} \rightarrow w_{A, 2}$
 $R_{\text{diff, wall}}$
(c) Mass flow