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Chapter 4: Electric Potential 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Learning Objectives 

After completing this chapter you should be 

able to  

4.1 Identify that the electric force is conservative 

and thus has an associated potential energy. 

4.2 Identify that at every point in a charged 

object’s electric field, the object sets up an 

electric potential V, which is a scalar quantity 

that can be positive or negative depending on 

the sign of the object’s charge. 

4.3 For a charged particle placed at a point in an 

object’s electric field, apply the relationship 

between the object’s electric potential V at 

that point, the particle’s charge q, and the 

potential energy U of the particle–object 

system.. 

4.4    Convert energies between units of joules 

and 

electron-volts. 

4.5  If a charged particle moves from an initial 

point to a final point in an electric field, apply 

the relationships between the change ∆𝑉 in 

the potential, the particle’s charge q, the 

change ∆𝑈 in the potential energy, and the 

work W done by the electric force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6  If a charged particle moves between two 

given points in the electric field of a charged 

object, identify that the amount of work done 

by the electric force is path independent. 

 

4.7 If a charged particle moves through a change 

V in electric potential without an applied force 

acting on it, relate V and the change K in the 

particle’s kinetic energy. 

4.8 If a charged particle moves through a change 

V in electric potential while an applied force 

acts on it, relate V, the change K in the 

particle’s kinetic energy, and the work Wapp 

done by the applied force. 

Key Ideas: 

• The electric potential V at a point P in 

the electric field of a charge particle is 

     ∆𝑉 = −
𝑊∞

𝑞0
=

𝑈

𝑞0
  

 

 

The electrostatic potential in the  plane of an electric dipole. The potential due to each charge is 
proportional to the charge and inversely proportional to the  distance from the charge. 
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1. The physics beyond the subject 

The electrostatic force is conservative, and thus we can introduce a potential energy (U) and  thus we can 

use the powerful techniques of energy conservation in solving problems.  

2. Electric Potential Energy  

Consider a charge 𝑞0 in an electric field E. The electric field exerts a force 

𝑞0𝐸⃗  on  the charge. And If you want to move the charge, you must exert a 

force −𝑞0𝐸⃗  on it. Now,  if you move the charge by a displacement 𝑑𝑠 , the 

work done by the electric field is  

𝑑𝑊 = 𝑞0𝐸⃗ ∙ 𝑑𝑠                   (4.1) , 

and you do work equal to  

𝑑𝑊𝑒𝑥𝑡 = −𝑞0𝐸⃗ ∙ 𝑑𝑠               (4.2); 

That is                      𝑊𝑒𝑥𝑡 = −𝑊             (4.3) 

The total work you done in moving the charge from point (𝑖) to point  (𝑓)  is equal to the change in electric 

potential energy (∆𝑈), so  

∆𝑈 = 𝑈𝑓 − 𝑈𝑖 = 𝑊𝑒𝑥𝑡      (4.4) 

Then using (4.3) we have  

∆𝑈 = −𝑊                 (4.5) 

so  

∆𝑈 = −𝑞0 ∫ 𝐸⃗ ∙ 𝑑𝑠 
𝑓

𝑖

   (4.6) 

3  Electric Potential 

It is useful to define the electric potential 𝑉; 

𝑉 =
𝑈

𝑞0
                (4.7)   

∆𝑉 =
∆𝑈

𝑞0
= −

𝑊

𝑞
      (4.8) 

 The change in electric potential (∆𝑉) ( potential difference) between 

two points (𝑖)   and (𝑓) is given by 
 

And from eq. (4.6) then  

∆𝑉 = 𝑉𝑓 − 𝑉𝑖  = −∫ 𝐸⃗ ∙ 𝑑𝑠 
𝑓

𝑖

                 (4.9)  

Figure 1 
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If we set Ui =0 at infinity as our reference potential energy, then the electric potential 𝑉𝑖 must also be zero 

there. Therefore, the electric potential at any point in an electric field can be defined to be 

𝑉 = −
𝑊∞

𝑞0
 = −∫ 𝐸⃗ ∙ 𝑑𝑠 

𝑓

∞

               (4.10)   

Here W∞ is the work done by the electric field on a charged particle as that particle moves in from infinity 

to point f. 

 
The Si unit of U is : Joule (J) 

The Si unit of V is : Joule (J/C) 

Another unit of V is : Volt ( V ) : (1V= 1J/ C  ) 

This unit of volt allows us to adopt a more conventional unit for the electric field, E, which is expressed in 

newtons per coulomb. 

 

We can now define an energy unit that is a convenient one for energy measurements in the 

atomic/subatomic domain: One electron-volt (eV) is the energy equal to the work required to move a 

single elementary charge e, such as that of the electron or the proton, through a potential difference of 

exactly one volt. The magnitude of this work is 𝑞∆𝑉, and  

 

 

CHECKPOINT 
In the figure, a proton moves from point i to point f in a uniform electric field directed as  

shown,  

(a) Does the electric field do positive or negative 

work on the proton?  

(b) Does the electric potential energy of the proton increase or decrease 

Answer: (a) negative (b) Increase 
 

4  Equipotential Surfaces 

If a charged particle moves perpendicular to electric field lines, then no work is done on it ( 𝑊 = 0), and 

so, its electric potential energy does not change (∆𝑈 = 0), and the electric potential does not change 

(∆𝑉 = 0). So; 

The electric potential energy (U) and the electric potential (V) remain constant along this path. 
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This path in two dimensional is called equipotential line, and in three dimension is called equipotential 

surface. 

Note that  

• the electric field (𝐸⃗ ) must be everywhere perpendicular to the equipotential surface. 

• As equipotential surfaces are close together, the E field is large  

Equipotential surface and E lines for a uniform field, a point charge, and a dipole  are shown in Figure 24.3. 

 

 

 

 

 

 

 

 

Example 1 

Figure 3 shows electric field 𝐸⃗ = 150𝑁/𝐶 directed downward what is the change in potential energy 

(∆𝑈) of a  released electron, when the electrostatic force causes it to move 

vertically upward through a distance d=520 m. 

Solution 

 

∆𝑈 = 𝑈𝑓 − 𝑈𝑖 = −𝑞0 ∫ 𝐸⃗ ∙ 𝑑𝑠 
𝑓

𝑖

                 (4.1) 

 

∆𝑈 = −(−1.6 × 10−19 𝐶 ) ∫ 𝐸𝑑𝑠 𝑐𝑜𝑠 𝜃
𝑓

𝑖
,         ( 𝜃 = 0) 

     = −(−1.6 × 10−19 𝐶 )(−1)𝐸 ∫ 𝑑𝑠,
150

0
            (𝐸 = 150 𝑁 𝐶⁄ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

= (−1.6 × 10−19 𝐶 )(150 𝑁/𝐶)(150 − 0) = −1.2 × 10−4J 

 

 

 

 

Example 2 

Figure 2 

Figure 3 
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(a) Figure 4a shows two points i and f in a uniform electric field E,  and are separated by a distance d. Find 

the potential difference Vf - Vi by moving a positive test charge q0 from i to f 

along the path (a) which is parallel to the field direction, and along the path (b) 

Solution  

along path (a), from eq. 4.9, then 

     𝑉𝑓 − 𝑉𝑖  = −∫ 𝐸⃗ ∙ 𝑑𝑠 
𝑓

𝑖

  

            = −∫ 𝐸𝑑𝑠 𝑐𝑜𝑠 𝜃
𝒇

𝒊
  (𝜃 = 0  𝑎𝑛𝑑 𝐸 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

            = −(−1)𝐸 ∫ 𝑑𝑠 
𝑓

𝑖
 

                 = (−1)𝐸 ∫ 𝑑𝑠 
𝑑

0

 

                = −𝐸𝑑 
along path (b), from eq. 2.2, then 

     𝑉𝑓 − 𝑉𝑖  = −∫ 𝐸⃗ ∙ 𝑑𝑠 
𝑓

𝑖

 

                   = −∫ 𝐸𝑑𝑠 𝑐𝑜𝑠 90𝑜
𝒄

𝒊

 − ∫ 𝐸𝑑𝑠 𝑐𝑜𝑠 45𝑜
𝒇

𝒄

 

                       = 0 − 𝐸 𝑐𝑜𝑠 45
𝑜
∫ 𝑑𝑠

𝑓

𝑐
 

                      = −𝐸cos45
𝑜 𝑑

𝑠𝑖𝑛45
𝑜 

          = −𝐸𝑑 
This is the same result we obtained in (a), as it must be; the potential difference between two points does not depend 

on the path connecting them (Electrostatic force is conservative). 

5- Electric potential due to a point charge 

In figure 5 Consider a point P at distance R from a fixed particle of positive 

charge q. To use Eq. (4.3), we imagine that we move a positive test charge 

q0 from point P to infinity. 

𝐸 =
1

4𝜋𝜀0

𝑞

𝑟2
 

     𝑉𝑓 − 𝑉𝑖  = −∫ 𝐸⃗ ∙ 𝑑𝑠 
𝑓

𝑅

 

Substituting by E and with the  integration we have; 

 

Figure 4 

Figure 5 
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     𝑉𝑓 − 𝑉𝑖  = −∫
1

4𝜋𝜀0

𝑓

𝑅

𝑞

𝑟2
 𝑑𝑟 

     𝑉𝑓 − 𝑉𝑖  = −∫
1

4𝜋𝜀0

𝑓

𝑅

𝑞

𝑟2
 𝑑𝑟 

     𝑉𝑓 − 𝑉𝑖 = −
𝑞

4𝜋𝜀0
[−

1

𝑟
]
𝑅

∞

 

𝑟𝑓  = ∞ , and therefore 𝑉𝑓  = 0. One therefore obtains an absolute value for the potential at any point; 

    0 − 𝑉 = −
𝑞

4𝜋𝜀0
(
1

𝑅
) 

switching R to r ,we then have 

𝑉 =
𝑞

4𝜋𝜀0
(
1

𝑟
)    (4.11)              ( 𝑝𝑜𝑖𝑛𝑡 𝑐ℎ𝑎𝑟𝑔𝑒) 

Note that : 

• This equation is hold also for negative charge. in which case  q,  is a negative sign. 

• Positive charge causes positive potential , and negative charge causes negative potential. 

6:  Potential Due to a Group of Point Charges 

The net potential at a point due to a group of point charges can be found with the help of the superposition 

principle. First the individual potential resulting from each charge is considered at the given point. Then 

we sum the potentials.   

   

(4.12) 

 
 

 

Example 3: 

 A charge -q is placed at one corner of a square of side a, and charges +g are placed at each of the other 

corners. What is the potential at the center of the square? 

 

 

 

Solution: 

 

 

 
 

-q +q 

+q +q 

a 
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Example 4 

 As shown in the figure, find the potential at P 

Solution 

 

 

7  Potential Due to an Electric Dipole 

The potential due to an electric dipole far from the dipole is given as.  

 

 
 

 

 

 

8  Potential due to a continuous charge distribution. 

1- Line of charge: 
A rod of length L has a uniform linear charge density 𝝀. Determine the 

potential at the point P, a perpendicular distance d from the left end of the 

rod. 

Solution: 

 
 

Using the integral tables, we find that; 

 

 
We can simplify this result by using the general relation ln A- ln B= ln(A/B). We then find 

        

4.13 
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Because V is the sum of positive values of dV, it too is positive, consistent with the logarithm being positive for an 

argument greater than 1. 

2- charged disk: 

A disk of radius a carries a uniform surface charge density a. Find the  potential on the axis at point P a 

distance z from the center. 

 

 

 

 

 

 

 

 

 

9. Calculation the field from the potential. 

the Equation 4.3 shows how to find the potential if the field is given. One can also find the field from the potential, as 

follow. 

Figure 4- shows cross sections of a family of closely spaced equipotential 

surfaces, the potential difference between each pair of adjacent surfaces being 

𝑑𝑉. As the figure suggests, the field at any point P is perpendicular to the 

equipotential surface through P. 

 

Suppose that a positive test charge 𝑞0 moves through a displacement from one 

equipotential surface to the adjacent surface. From Eq. 4-8, we see that the work 

the electric field does on the test charge during the move is −𝑞0𝑑𝑉, and  from 

eq. 4.1 , we saw also that the work done may be written as;   𝑑𝑊 = 𝑞0𝐸⃗ ∙ 𝑑𝑠 .  
Equating the two expressions we find that; 

 
 

 

Or 

 

 

 

 

4.14 

 

4.15 
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If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and z components of at any point are 

              
 

𝝏 𝝏𝒙⁄  is a partial derivative that means we take the derivative of V with respect to x  

while holding у and z constant. In vector notation, we get 

 

E⃗⃗ = −(
𝜕𝑉

𝜕𝑥
î +

𝜕𝑉

𝜕𝑦
ĵ +

𝜕𝑉

𝜕𝑧
k̂)       (4.16) 

 
For the simple situation in which the electric field is uniform, We can approximate; 

 

E = −
∆𝐸

∆𝑠
 (4.17) 

 

Example 5 :  Suppose, in some region of space, the electric potential is given as; 𝑉(𝑥) = 𝐴𝑥2, where 

A constant. What are the x, y, and z components of the electric field in this region. 

Solution: 

 
 

 

 

 

 

Example 7: As we know, the electric potential at any point on the central axis of a uniformly charged disk is 

given by 
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Starting with this expression, derive an expression for the electric field at any point on the axis of the disk 

 

Solution: 

 
Circular symmetry leads to  

 
 

 
 

10 : Electric potential energy of a system of point charge. 

If a charge q2 is placed in the field of a charge q1 a distance r 

away, the potential energy  of the pair is then; 

 

 

 

 

 

  

 

 

 

The electric potential energy of a system of fixed point charges is equal to the work that must be done by an external agent to 

assemble the system, bringing each charge in from an infinite distance. 

If there are more than two charges present, the electrostatic energy of the system is 

 

 

 

 

 

 

 

 

 

 

 

     

4.18 

     

4.19 
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Example 6 
The Figure shows three point charges held in fixed positions by forces that 

are not shown. What is the electric potential energy U of this system of 

charges? Assume that d =12 cm and that 

 
SOLUTION 
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11 Potential  of a Charged  isolated Conductor 

 

We have seen that the charge on a conductor resides on the outer surface and 

that the electric field within the conductor is zero. This means that the potential 

everywhere ( inside and on the surface ) a conductor is constant. 

 

 

 

 

 

 

 

 

 

 

 


